Skip to main content

Neural Networks: A Statistician’s (Possible) View

  • Conference paper
Classification and Knowledge Organization
  • 415 Accesses

Summary

Within the past few years, neural networks (NNs) have emerged as a popular, rather general-purpose means of data processing and analysis. As in most applications they are employed to perform rather standard statistical tasks like regression analysis and classification, one might wonder what is really new about them. We shed some light on this issue from a statistician’s point of view by “translating” neural network terminology into more familiar terms and then discussing some of their most important properties. Particular attention is given to “supervised” classification, i.e., discriminant analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AKAIKE, H. (1973): Information theory and an extension of the maximum likelihood principle. In Petrov, B. N. and Csáki, F. (eds.), Second International Symposium on Information Theory, pp. 267–281. Budapest, Hungary: Akademiai Kiado.

    Google Scholar 

  • ANTHONY, M. (1994): Probabilistic analysis of learning in artificial neural networks: The PAC model and its variants. Tech. Rep. NC-TR-94-3, NeuroColt Technical Report Series.

    Google Scholar 

  • BALDI, P. and HORNIK, K. (1995): Learning in linear neural networks: a survey. IEEE Transactions on Neural Networks, NN-6(4), 837–858.

    Article  Google Scholar 

  • BARRON, A. R. (1992): Neural net approximation. In Narendra, K. (ed.), Proceedings of the 6th Yale Workshop on Adaptive Learning Systems, pp. 69–72. New Haven: Yale University.

    Google Scholar 

  • BARRON, A. R. (1993): Universal approximation bounds for superpositions of a sigmoidal function. IEEE Transactions on Information Theory, IT-39, 930–945.

    Article  Google Scholar 

  • BRUCK, J. (1990): Harmonic analysis of polynomial threshold functions. SIAM Journal on Discrete Mathematics, 3, 168–177.

    Article  Google Scholar 

  • BRUCK, J. and SMOLENSKY, P. (1992): Polynomial threshold functions, AC0 functions and spectral norms. SIAM Journal on Computing, 21, 33–42.

    Article  Google Scholar 

  • CYBENKO, G. (1989): Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals, and Systems, 2, 303–314.

    Article  Google Scholar 

  • FUNAHASHI, K. (1989): On the approximate realization of continuous mappings by neural networks. Neural Networks, 2, 183–192.

    Article  Google Scholar 

  • GOLDBERG, P. and JARRUM, M. (1993): Bounding the Vapnik-Chervonenkis dimension of concept classes parametrized by real numbers. In Proceedings of the 6th Annual ACM Conference on Computational Learning Theory, pp. 361–369. New York: ACM Press.

    Chapter  Google Scholar 

  • HAYKIN, S. (1994): Neural Networks: A Comprehensive Foundation. New York: Macmillan College Publishing.

    Google Scholar 

  • HORNIK, K. (1991): Approximation capabilities of multilayer feedforward networks. Neural Networks, 4, 251–257.

    Article  Google Scholar 

  • HORNIK, K. (1993): Some new results on neural network approximation. Neural Networks, 6, 1069–1072.

    Article  Google Scholar 

  • HORNIK, K.; STINCHCOMBE, M. and WHITE, H. (1989): Multilayer feedforward networks are universal approximators. Neural Networks, 2, 359–366.

    Article  Google Scholar 

  • JUDD, J. S. (1990): Neural Network Design and the Complexity of Learning. Cambridge, MA: MIT Press.

    Google Scholar 

  • KARPINSKI, M. and MACINTYRE, A. (1994): Polynomial bounds for the VC dimension of sigmoidal neural networks. Tech. Rep. 85116-CS, University of Bonn.

    Google Scholar 

  • KOHONEN, T. (1989): Self-Organization and Associative Memory. Berlin: Springer, 3rd edn.

    Book  Google Scholar 

  • KOHONEN, T. (1995): Self-organizing maps. Berlin: Springer.

    Book  Google Scholar 

  • LIN, J.-H. and VITTER, J. S. (1991): Complexity results on learning by neural nets. Machine Learning, 6, 211–230.

    Google Scholar 

  • MACKAY, D. J. C. (1992a): Bayesian interpolation. Neural Computation, 4(3), 415–447.

    Article  Google Scholar 

  • MACKAY, D. J. C. (1992b): The evidence framework applied to classification networks. Neural Computation, 4(5), 720–736.

    Article  Google Scholar 

  • MACKAY, D. J. C. (1992c): A practical bayesian framework for backpropagation networks. Neural Computation, 4(3), 448–472.

    Article  Google Scholar 

  • MURATA, N.; YOSHIZAWA, S. and AMARI, S.-I. (1994): Network information criterion—determining the number of hidden units for an artificial neural network model. Neural Networks, 5(6), 865–872.

    Article  Google Scholar 

  • RIPLEY, B. (1993): Statistical aspects of neural networks. In Barndorff-Nielsen, O. E., Jensen, J. L., and Kendall, W. S. (eds.), Networks and Chaos—Statistical and Probabilistic Aspects, vol. 50 of Monographs on Statistics and Applied Probability, pp. 40–123. London: Chapman and Hall.

    Google Scholar 

  • RIPLEY, B. (1996): Pattern Recognition and Neural Networks. Cambridge University Press.

    Google Scholar 

  • RISSANEN, J. (1986): Stochastic complexity and modeling. The Annals of Statistics, 14(3), 1080–1100.

    Article  Google Scholar 

  • RUMELHART, D. E.; Hinton, G. E. and Williams, R. J. (1986): Learning representations by backpropagating errors. Nature, 323, 533–536.

    Article  Google Scholar 

  • SIEGELMANN, H. T. and Sontag, E. D. (1994): Analog computation, neural networks, and circuits. Theor. Comp. Sci., 131, 331–360.

    Article  Google Scholar 

  • SIEGELMANN, H. T. and Sontag, E. D. (1995): On the computational power of neural nets. J. Comp. Syst. Sci., 50, 132–150.

    Article  Google Scholar 

  • SONTAG, E. D. (1992): Feedforward nets for interpolation and classification. J. Comp. Syst. Sci., 45, 20–48.

    Article  Google Scholar 

  • STONE, M. (1974): Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society Series B, 36, 111–147.

    Google Scholar 

  • VALIANT, L. G. (1984): A theory of the learnable. Communications of the ACM, 27(11), 1134–1142.

    Article  Google Scholar 

  • VAPNIK, V. N. (1995): The nature of statistical learning theory. New York: Springer.

    Google Scholar 

  • VAPNIK, V. N. and Chervonenkis, A. Y. (1991): The necessary and sufficient conditions for consistency of the method of empirical risk minimization. Pattern Recognition and Image Analysis, 1(3), 284–305.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hornik, K. (1997). Neural Networks: A Statistician’s (Possible) View. In: Klar, R., Opitz, O. (eds) Classification and Knowledge Organization. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59051-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59051-1_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62981-8

  • Online ISBN: 978-3-642-59051-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics