Skip to main content

Removal of H2S from coal gas: effect of various parameters on the desulfurization efficiency

  • Conference paper
Desulfurization of Hot Coal Gas

Part of the book series: NATO ASI Series ((ASIG,volume 42))

  • 311 Accesses

Abstract

After a decade of extensive research, a number of solid sorbents have been identified as being suitable for the high-temperature removal of H2S from coal gas. Current activities are aimed at the development of a continuous desulfurization process through reactor studies and pilot-plant testing. In this paper, the influence of various parameters related to the type of sorbent, the type of reactor, and the required process conditions, are discussed, and elucidated for the promising iron-oxide based sorbents as a typical example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schrodt J.T., 1980, Hot desulfurization I: use of gasifier ash in fixed bed process, US DOE Report DOE/ET/10463-Ti, Washington DC.

    Google Scholar 

  2. Sugitani T., Kakai J., Yamamoto H., Kawai I., Kobayashi S., Ishii T., Hozumi S., 1987, Fundamental studies and present status of IHI hot gas desulfurization process, International Conference on Coal Science (edited by J.A. Moulijn et al.), 915.

    Google Scholar 

  3. Kobayashi S., 1990, Test results of Yubari Hot gas desulfurization pilot plant, Coal Conversion Technology Department Ishikawajima-Harima Heavy Industries Co. Ltd.

    Google Scholar 

  4. Gangwal, S.K., 1991, Hot-gas desulfurisation sorbent development for IGCC systems, in: ICHEME Symp.Series, 123,159.

    Google Scholar 

  5. Ayala R.E., Feiteiberg A.S., Furman A.H., 1995, Development of a high-temperature moving bed coal gas desulfurization system, in: Proceeding of the 12th annual international Pittsburgh coal conference (edited by Chiang S.H.), University of Pittsburgh, 1053.

    Google Scholar 

  6. Westmoreland, P.R., Harrison D.P., 1976, Evaluation of candidate solids for high-temperature desulfurization of low BTU gases, Env. Sci.,Techn., 10(7), 659.

    Article  CAS  Google Scholar 

  7. Heesink, 1994, High temperature coal gas desulphurization: applying calcareous sorbents and fluidized bed contactors, PhD thesis University of Twente.

    Google Scholar 

  8. Van der Ham, 1994, Regenerative high temperature desulfurization of coal gas in a circulating fluidized bed, PhD thesis University of Twente.

    Google Scholar 

  9. Van der Ham A.G.J., Venderbosch R.H., Prins W., van Swaaij W.P.M., 1997, Survey of Desulfurization Processes for Coal Gas, in these proceedings.

    Google Scholar 

  10. Krishna R., Sie ST., 1995, Strategies for multiphase reactor selection, Chem. Engng. Sci., 24A, 4029.

    Google Scholar 

  11. Schrodt J.T. Hilton G.B., Rogge CA., 1975, High-temperature desulfurization of low-CV fuel gas, Fuel, 54, 272.

    Article  Google Scholar 

  12. Van der Wal W.J.J., 1987, Desulfurization of process gas by means of iron-oxide-on-silica sorbents, PhD thesis University of Utrecht, the Netherlands.

    Google Scholar 

  13. Jain S.C., Gupta R., Gangwal S.K., 1991, Development of zinc ferrite sorbents for desulphurization of hot coal gas in a fluid-bed reactor, A.I.Ch.E. Summer Meeting, Pittsburgh, Pennsylvania, USA.

    Google Scholar 

  14. Mojtahedi W., Abbasian J., 1995, H2S removal from coal gas at elevated temperature and pressure in fluidized beds with zinc titanate sorbents: 1. cyclic tests, Energy and Fuels, 9, 429.

    Article  CAS  Google Scholar 

  15. Ayala R.E., Jain S.C., 1992, Development of durable mixed-metal oxide sorbents for high-temperature desulphurization of coal gases in moving-bed reactors, A.I.Ch.E. Annual Meeting, no. 239d.

    Google Scholar 

  16. Khara G.P., Delzer G.A., Kubicek D.H., Greenwood G.J., 1995, Hot gas desulfurization with Philips Z-Sorb sorbent in moving and fluidized bed reactors, Environmental Progress, 14, 146.

    Article  Google Scholar 

  17. Edwards M.S., 1979, H2S-removal processes for low-BTU coal gas, Department of Energy/Fossil contract no. W-7405-eng-26.

    Google Scholar 

  18. Schrodt J.T., Best H.E., 1978, Sulfur recovery from fuel gas desulfurization sorbents, AIChE. Symp.Ser., 74(175), 184.

    CAS  Google Scholar 

  19. Tamhankar S.S., Hasatani M., Wen C.Y., 1981, Kinetic studies on the reactions involved in the hot gas desulfurization using a regenerable iron oxide sorbent-I, Chem. Engng. Sci., 36, 1181.

    Article  CAS  Google Scholar 

  20. Suehiro M., Fujishima H., 1993, Fixed bed type hot gas cleanup technology for integrated coal gasification combined cycle power generation, 5th Japan/USA technical meeting on surface coal gasification, October 13, Tokyo, Japan.

    Google Scholar 

  21. Nakayama T., Araki S., Takahata E., Takahashi A., 1996, Development of hot gas cleanup technology for IGCC-technical trends of 3 types hot gas cleanup process., J. Japanese Inst. of Energy, 75, 351.

    Article  Google Scholar 

  22. Ichikawa K., 1996, Test results of the IGCC system by the 200 t/d Nakosa pilot plant, paper presented at the 6th Japan Australia Joint Technical Meeting on Coal, Agency of Industrial Science & Technology, 4-6 June 1996, Hoikado.

    Google Scholar 

  23. Ichikawa K., Kuwamata N., Kamei K., 1993, Development of a simultaneous sulfur and dust removal process for IGCC power generation system, Proc. of 3rd Int. Symp. on Gas Cleaning at High Temperatures, 419.

    Google Scholar 

  24. Geldart D., 1973, Types of gas fluidization, Powder Technol., 7, 285.

    Article  CAS  Google Scholar 

  25. Grace J.R., 1986, Contacting modes and behaviour classification of gas-solid and other two-phase suspensions, Can.J.Chem.Engng, 64, 353.

    Article  CAS  Google Scholar 

  26. Kunii D., Levenspiel O., 1991, Fluidization Engineering, Butterworth-Heinemann, Boston.

    Google Scholar 

  27. Schrodt J.T., Mohan C.P., 1981, Fuel gas desulfurization in fluidized-beds of gasifier waste ashes, AIChE. Symp.Ser., 77(211), 1.

    CAS  Google Scholar 

  28. Harrison D.P., 1995, Control of gaseous contaminants in IGCC processes, an overview, in: Proceedings of the 12th annual international Pittsburgh Coal Conference, (edited by Chiang S.H.), Pittsburgh Coal Conference, Pittsburgh, 1047.

    Google Scholar 

  29. Swischer J.H., Yang J., Gupta R.P., 1995, Attrition-resistant zinc titanate sorbent for sulfur, Ind. Engng. Chem. Res., 34,4463.

    Article  Google Scholar 

  30. Bureau A.C., Olden M.J.F., 1967, The operation of the Frodingham desulfurising plant at Exeter, Chem. Engng., March, 55.

    Google Scholar 

  31. Van Yperen R., 1994, On the high temperature desulphurization of coal gas: the development of a regenerable absorbent, PhD thesis University of Utrecht, The Netherlands.

    Google Scholar 

  32. Van Swaaij, 1978, The design of gas-solids fluid bed and related reactors, ACS Symp.Ser., 72, 193.

    Article  Google Scholar 

  33. Werther, 1978, Mathematische Modellierung von Wirbelschichtreaktoren, Chem. Ing. Techn., 50, 850.

    Article  CAS  Google Scholar 

  34. Kuipers J.A.M., Prins W., Van Swaaij W.P.M., 1991, Theoretical and Experimental Bubble Formation at a Single Orifice in a Two-dimensional Gas Fluidized Bed, Chem. Engng. Sci., 46, 11, p.2881.

    Article  CAS  Google Scholar 

  35. Chehbouni A., Chaouki J., Guy C., Klvana D., 1994, Characterization of the flow transition between bubbling and turbulent fluidization, Ind. Engng. Chem. Res., 33, 1889.

    Article  CAS  Google Scholar 

  36. Chehbouni A., Chaouki J., Guy C, Klvana D., 1995, Effets de differents parametres sur le vitesses de transition de la fluidisation en regime turbulent, Can. J. Chem. Engng., 73,41.

    Article  CAS  Google Scholar 

  37. Bi H.T., Grace J.R., 1995, Effect of measurement method on the velocities used to demarcate the onset of turbulent fluidization, Chem. Engng. J., 57, 261.

    CAS  Google Scholar 

  38. Bi H.T., Grace J.R., Lim K.S., 1995, Transition from bubbling to turbulent fluidization, Ind. Engng. Chem. Res., 34, 4003.

    Article  CAS  Google Scholar 

  39. Arnaldos J., Casal J., 1996, Prediction of transition velocities and hydrodynamical regimes in fluidized beds, Powder Technol., 86, 285.

    Article  CAS  Google Scholar 

  40. Venderbosch, 1997, PhD thesis University of Twente, The Netherlands, to be published.

    Google Scholar 

  41. Kohl A.L., Riesenfeld F.C., 1974, Gas Purification, 2nd ed., Gulf Publishing Co., Houston, 343.

    Google Scholar 

  42. Bi H., Fan L.S., 1992, Existence of turbulent regime in gas-solid fluidization, A.I.Ch.E.J., 38, 297.

    Article  CAS  Google Scholar 

  43. Contractor R.M., Chaouki J., 1991, Circulating fluidized bed as a catalytic reactor, in: Circulating Fluidized Bed Technology III, Pergamom Press, Oxford, 39.

    Google Scholar 

  44. Van der Ham, A.G.J., Prins W., van Swaaij W.P.M., 1994, Regenerative, high temperature desulfurization of coal gas in a lab-scale circulating fluidized bed set-up, in: Circulating Fluidized Bed Technology IV, Pergamon Press, Canada, 657.

    Google Scholar 

  45. Tseng S.C., Tamhankar S.S., Wen C.Y., 1981, Kinetic studies on the reactions involved in the hot gas desulfurization using a regenerable iron oxide sorbent-H, Chem. Engng. Sci., 36,1287.

    Article  CAS  Google Scholar 

  46. Tamhankar S.S., Garimella S., Wen C.Y., 1985, Kinetic studies on the reactions involved in the hot gas desulfurization using a regenerable iron oxide sorbent-III. Reactions of the sulfided sorbent with steam and steam-air mixtures, Chem. Engng. Sci., 40, 1019.

    Article  CAS  Google Scholar 

  47. Prins, W., Harmsen G.J., de Jong P., van Swaaij W.P.M., 1987, Heat transfer from an immersed fixed silver sphere to a gas fluidized bed of very small particles, in Fluidization VI, Engineering Foundation, Banff, 677.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Venderbosch, R.H., Prins, W., Van der Harn, A.G.J. (1998). Removal of H2S from coal gas: effect of various parameters on the desulfurization efficiency. In: Atimtay, A.T., Harrison, D.P. (eds) Desulfurization of Hot Coal Gas. NATO ASI Series, vol 42. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58977-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58977-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63810-7

  • Online ISBN: 978-3-642-58977-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics