Skip to main content

Multi-Site Recording of Neural Activity using Planar Electrode Arrays

  • Chapter
Neural Circuits and Networks

Part of the book series: NATO ASI Series ((NATO ASI F,volume 167))

  • 116 Accesses

Abstract

Since the first proposal for an Ion-Sensitive FET in 1970 [4] micro-fabrication technology has become one of the key-techniques for building sensor devices for biological measurements. With technical innovation in the field of electronic engineering sensors for neurophysiological recording have also been investigated extensively. The most promising advantage of this type of sensor is the capability for integrating multiple electrodes on a single device. This has allowed us to visualize spatially propagating activity at a fine time resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albowitz B. and Kuhnt U.: Epileptiform activity in the Guinea-pig neocortical slice spreads preferentially along supragranular layers - recordings with voltage-sensitive dyes. Eur. J. Neurosci. 7 1273–1284 (1995)

    Article  Google Scholar 

  2. Bashir, Z., Berretta, N., Bortolotto, Z., Clark, K., Davis, C., Freguelli, B. G., Harvey, J., Potier, B., and Collingridge, G. L.: NMDA receptors and long-term potentiation in the hippocampus. In The NMDA Receptor Collingridge G. L. and Watkins J. C. eds. Oxford Univ. Press 295–312 (1994)

    Google Scholar 

  3. BeMent, S. L., Wise, K. D., Anderson, D. J., Najafi, K., and Drake, K. L.: Solid-state electrodes for multichannel multiplexed intracortical neuronal recording. IEEE Trans. Biomed. Eng. BME-33 230–241 (1986)

    Article  Google Scholar 

  4. Bergveld P.: Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans. Biomed. Eng. BME-17 70–71 (1970)

    Article  Google Scholar 

  5. Bove, M., Grattarola, M., and Martinoia, S.: Coupling of networks of neurons to substrate planar microtransducers a review. ¡n Neurobiology Torre V. and Conti F. eds. Plenum New York 251–264 (1996)

    Chapter  Google Scholar 

  6. Bliss T.V. and Lpmo T.: Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. (Lond.) 232 331–356 (1973)

    Google Scholar 

  7. Connors B. W.: Initiation of synchronized neuronal bursting in neocortex. Nature 310 685–687 (1984)

    Article  Google Scholar 

  8. Curtis, A., Breckenridge, L., Connolly, P., Dow, J., Wilkinson, C., and Wilson, R.: Making real neural nets: design criteria. Med. Biol. Eng. Comput. 30 CE33–CE36 (1992)

    Article  Google Scholar 

  9. Gross, G. W., Rieske, E., Kreutzberg, G. W., and Meyer, A.: A new fixed-array multi-electrode system designed for long-term monitoring of extracellular single unit neuronal activity in vitro. Neurosci. Lett. 6 101–105 (1977)

    Google Scholar 

  10. Gross, G. W., Wen, W. Y., and Lin, J. W.: Transparent indium-tin oxide electrode patterns for extracellular multisite recording in neuronal cultures. J. Neurosci. Methods 15 243–252 (1985)

    Article  Google Scholar 

  11. Haberly, L. B., and Shepherd, G. M.: Current-density analysis of summed evoked potentials in opossum prepyriform cortex. J. Neurophysiol. 36 789–803 (1973)

    Google Scholar 

  12. Israel, D., Barry, W., Edell, D., and Mark, R.: An array of microelectrodes to stimulate and record from cardiac cells in culture. Am. J. Physiol. 247, H669–H674 (1984)

    Google Scholar 

  13. Jimbo, Y, Robinson, H. and Kawana A.: Simultaneous measurement of intracellular calcium and electrical activity from patterned neural networks in culture. IEEE Trans. Biomed. Eng. BME- 40 804–810 (1993)

    Article  Google Scholar 

  14. Jimbo, Y. Robinson H. and Kawana A.: Strengthening of synchronized activity by tetanic stimulation in cortical cultures: Application of planar electrode arrays. submitted to IEEE Trans.

    Google Scholar 

  15. Kamioka, H., Maeda, E., Jimbo, Y., Robinson, H., and Kawana, A.: Spontaneous periodic synchronized bursting during formation of mature patterns of connections in cortical cultures. Neurosci. Lett. 206 109–112 (1996)

    Article  Google Scholar 

  16. Kleinfeld, D., Kahler, K., and Hockberger, P.: Controlled outgrowth of dissociated neurons on patterned substrates. J. Neurosci. 8 4098–4120 (1988)

    Google Scholar 

  17. Kovacs, G., Storment, C., Halks-Miller, M., Belczynski, C., Santina, C., Lewis, E., and Maluf, N.: Silicon-substrate microelectrode arrays for parallel recording of neural activity in peripheral and cranial nerves. IEEE Trans. Biomed. Eng. BME-41 567–577 (1994)

    Article  Google Scholar 

  18. Meister, M., Wong, R., Baylor, D., and Shatz, C.: Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science 17 939–943 (1991)

    Article  Google Scholar 

  19. Najafi, K., and Wise, K. D.: An implantable multielectrode array with on-chip signal processing. IEEE J. Solid-State Circ.SC-21 1035–1044 (1986)

    Article  Google Scholar 

  20. Najafi K.: Solid-state microsensors for cortical nerve recordings. IEEE EMBS Magazine 13 375–387 (1994)

    Google Scholar 

  21. Sutor, B., Hablitz, J., Rucker, F., and Bruggencate, G.: Spread of epileptifonn activity in the immature rat neocortex studied with voltage-sensitive dyes and laser scanning microscopy. J. Neurophysiol. 72 1756–1768 (1994)

    Google Scholar 

  22. Wheeler, B., and Novak, J. L.: Current source density estimation using microelectrode array data from the hippocampal slice preparation. IEEE Trans. Biomed. Eng. BME-33 1204–1212 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jimbo, Y., Kawana, A. (1998). Multi-Site Recording of Neural Activity using Planar Electrode Arrays. In: Torre, V., Nicholls, J. (eds) Neural Circuits and Networks. NATO ASI Series, vol 167. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58955-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58955-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63801-5

  • Online ISBN: 978-3-642-58955-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics