Skip to main content

Abstract

We present a flow-based method for decomposing the graph of a geometric constraint problem. The method fully generalizes degree-of-freedom calculations, prior approaches based on matching specific subgraph patterns, as well as prior flow-based approaches. Moreover, the method generically iterates to obtain a decomposition of the underlying algebraic system into small subsystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Ait-Aoudia, R. Jegou, and D. Michelucci. Reduction of constraint systems. In Compugraphics, pages 83–92, 1993.

    Google Scholar 

  2. W. Bouma, I. Fudos, C. Hoffmann, J. Cai, and R. Paige. A geometric constraint solver. Computer Aided Design, 27: 487–501, 1995.

    Article  MATH  Google Scholar 

  3. J. Canny. Improved algorithms for sign determination and existential quantifier elimination. Computer Journal, 36(5), 1993.

    Google Scholar 

  4. S. C. Chou, X. S. Gao, and J. Z. Zhang A method of solving geometric constraints. Technical report, Wichita State University, Dept. of Computer Sci., 1996.

    Google Scholar 

  5. G. Crippen and T. Havel. Distance Geometry and Molecular Conformation. John Wiley & Sons, 1988.

    Google Scholar 

  6. G.E. Collins Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In Lect. Notes in CS, Vol33, pages 134–183. Springer-Verlag, 1975.

    Google Scholar 

  7. N. Vorobjov D. Grigoriev. Solving systems of polynomial inequalities in subexponential time. J Symbolic Computation, 5, 1988.

    Google Scholar 

  8. S. Even and R. Tarjan. Network flow and testing graph connectivity. SIAM journal on computing, 3: 507–518, 1975.

    Article  MathSciNet  Google Scholar 

  9. L.R. Ford and D.R. Fulkerson. Flows in Networks. Princeton Univ. Press, 1962.

    Google Scholar 

  10. I. Fudos, Geometric Constraint Solving. PhD thesis, Purdue University, Dept of Computer Science, 1995.

    Google Scholar 

  11. Т. Havel. Some examples of the use of distances as coordinates for Euclidean geometry. J. of Symbolic Computation, 11: 579–594, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  12. Christoph Hoffmann, Andrew Lomonosov, and Meera Sitharam. Finding solvable subsets of constraint graphs. In Principles and Practice of Constraint Programming — CP97, pages 463–477. Springer LNCS 1330, 1997.

    Chapter  Google Scholar 

  13. Ching-Yao Hsu. Graph-based approach for solving geometric constraint problems. PhD thesis, University of Utah, Dept. of Corp. Sci., 1996.

    Google Scholar 

  14. Christoph M. Hoffmann and Pamela J. Vermeer. Geometric constraint solving in R 2 and R3. In D. Z. Du and F. Hwang, editors, Computing in Euclidean Geometry. World Scientific Publishing, 1994. second edition.

    Google Scholar 

  15. Christoph M. Hoffmann and Pamela J. Vermeer. A spatial constraint problem. In Workshop on Computational Kinematics, France, 1995. INRIA Sophia-Antipolis.

    Google Scholar 

  16. I. Emiris J. Canny. An efficient algorithm for the sparse mixed resultant. In O. Moreno ed.s G. Cohen, T. Mora, editor, Proc. 10th Intern. Symp. on Applied Algebra, Algebraic Algorithms, an d Error Correcting Codes, volume 263, pages 89–104. Lecture Notes in Computer Science, Springer-Verlag, 1993.

    Google Scholar 

  17. A.G. Khovanskii. Newton polyhedra and the genus of complete intersections. Funktsional’nyi Analiz i Ego Prilozheniya, 12 (1): 51–61, 1978.

    MathSciNet  Google Scholar 

  18. E. Lawler. Combinatorial optimization, networks and Matroids. Holt, Rinehart and Winston, 1976.

    MATH  Google Scholar 

  19. D. Lazard. Résolution des systèmes d’équations algébriques. Theoretical Computer Science, 15: 77–110, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  20. D. Lazard. A new method for solving algebraic systems of positive dimension. Discrete Applied Mathematics, 33 (1): 147–160, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  21. R. Latham and A. Middleditch. Connectivity analysis: a tool for processing geometric constraints. Computer Aided Design, 28: 917–928, 1996.

    Article  Google Scholar 

  22. J. Owen. Algebraic solution for geometry from dimensional constraints. In ACM Symp. Found. of Solid Modeling, pages 397–407, Austin, Tex, 1991.

    Google Scholar 

  23. J. Owen. Constraints on simple geometry in two and three dimensions. In Third SIAM Conference on Geometric Design. SIAM, November 1993. To appear in Int J of Computational Geometry and Applications.

    Google Scholar 

  24. J.A. Pabon. Modeling method for sorting dependencies among geometric entities. In US States Patent 5, 251–290, Oct 1993.

    Google Scholar 

  25. T.L. Magnanti R.K. Ahuja and J.B. Orlin. Network Flows. Prentice-Hall, 1993.

    Google Scholar 

  26. J. Renegar. On the computational complexity and the first order theory of the reals, part i. Journal of Symbolic Computation, 13: 255–299, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  27. O. E. Ruiz and P. M. Ferreira. Algebraic geometry and group theory in geometric constraint satisfaction for computer-aided design and assembly planning. IIE Transactions on Design and Manufacturing, 28: 281–294, 1996.

    Google Scholar 

  28. B. Sturmfels. Sparse elimination theory. In Proc. Computational Algebraic Geometry and Commutative Algebra, pages 377–396. Cambridge University Press, 1993.

    Google Scholar 

  29. D. Wang. An elimination method for polynomial systems. J. Symbolic Computation, 16: 83–114, 1993.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hoffmann, C.M., Lomonosov, A., Sitharam, M. (1998). Geometric Constraint Decomposition. In: Brüderlin, B., Roller, D. (eds) Geometric Constraint Solving and Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58898-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58898-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63781-0

  • Online ISBN: 978-3-642-58898-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics