Skip to main content

YAMS: A Multi-Agent System for 2D Constraint Solving

  • Chapter
Geometric Constraint Solving and Applications

Abstract

In spite of recent trends, geometric constraint solving remains an important topic in CAD. The first methods were mainly based on algebraic or geometric approaches. For several years, current methods, proceed by decomposition of the problem into sub-problems easier to solve. Recently, we have exposed a general formalization of the principles of these approaches and showed that they are all based on the invariance under displacements of the CAD constraint systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Aldefeld. Variations of geometries based on a geometric-reasoning method. Computer-Aided Design, 20 (3): 117–126, 1988.

    Article  MATH  Google Scholar 

  2. B. Aldefeld, H. Malberg, H. Richter, and K. Voss. Rule-based variational geometry in Computer-Aided Design, pages 27–46. Artificial Intelligence in Design. (D.T. Pham ed. ), Springer-Verlag, 1992.

    Google Scholar 

  3. Y. Bertrand and J.-F. Dufourd. Algebraic specification of a 3D-modeller based on hypermaps. Computer Vision–GMIP, 56 (1): 29–60, 1994.

    Google Scholar 

  4. Y. Bertrand, J.-F. Dufourd, J. Françon, and P. Lienhardt. Algebraic specification and development in geometric modeling. In Proceedings of the TAPSOFT Conference, LNCS 668, pages 75–89. Springer-Verlag, 1993.

    Google Scholar 

  5. W. Bouma, I. Fudos, C. Hoffmann, J. Cal, and R. Paige. A geometric constraint solver. Computer-Aided Design, 27 (6): 487–501, 1995.

    Article  MATH  Google Scholar 

  6. B. Bruederlin. Using geometric rewrite rules for solving geometric problems symbolically. Theoritical Computer Science, pages 291–303, 1993.

    Google Scholar 

  7. M. Buthion. Un programme qui résout formellement desproblèmes de constructions géométriques. RAIRO Informatique, 13 (1): 73–106, 1979.

    MathSciNet  MATH  Google Scholar 

  8. J.-F. Dufourd, P. Mathis, and P. Schreck. Formal resolution of geometrical constraint systems by assembling. Proceedings of the 4th ACM Solid Modeling conf, pages 271–284, 1997.

    Google Scholar 

  9. J.-F. Dufourd, P. Mathis, and P. Schreck. Geometric construction by assembling solved subfigures. Artificial Intelligence Journal, 1998.

    Google Scholar 

  10. J.-F. Dufourd and P. Schreck. Un système à base de connaissances pour les constructions géométriques. In Actes de la ConférenceAFCЕТ-RFIA, Paris, pages 351–361, 1994.

    Google Scholar 

  11. G.A. Kramer. Geometric reasoning in the kinematic analysis of mechanisms. PhD thesis, University of Sussex, 1990.

    Google Scholar 

  12. G.A. Kramer. Using degrees of freedom analysis to solve geometric constraint systems. In Proceedings of the Ith ACM Symposium of Solid Modeling and CAD/CAM Applications, pages 371–378. ACM Press, 1991.

    Chapter  Google Scholar 

  13. H. Lebesgue. Leçons sur les constructions géométriques. Gauthier-Villars, Paris, 1950.

    MATH  Google Scholar 

  14. H. Lamure and D. Michelucci. Decomposition of 2D constraints graphs. Technical report, Ecole des Mines, Saint-Etienne, 1995.

    Google Scholar 

  15. P. Mathis. Constructions gomtriques sous contraintes en modlisation base topologique. PhD thesis, Université de Strabourg, 1997.

    Google Scholar 

  16. J.L. Moris. Computational Methods in Elementary Numerical Analysis. John Wiley, 1983.

    Google Scholar 

  17. J. Owen. Algebraic solution for geometry from dimensional constraints. In Proceedings of the Ith ACM Symposium of Solid Modeling and CAD/CAM Applications, pages 397–407. ACM Press, 1991.

    Chapter  Google Scholar 

  18. J. Petersen. Problèmes de constructions géométriques. J. Gabay (new edition), 1990.

    Google Scholar 

  19. W.H. Press, S.A. Teukolsky, WT Werling, and В.P. Flannery. Numerical Recipes in C. Cambridge University Press, 1992.

    Google Scholar 

  20. P. Schreck. Implantation d’un système à base de connaissances pour les constructions géométriques. Revue d’Intelligence Artificielle, 8 (3): 223–247, 1994.

    Google Scholar 

  21. P. Schreck. A knowledge-based for solving geometric constructions problems. In Proceedings of the 7th International Conference on Systems research, Informatics and Cybernetics, pages 19–24. J.W. Brahan and G.E. Lasker, 1994.

    Google Scholar 

  22. M. Wooldridge and J.P. Muller. Intelligent agents, theory and practice. Knowledge Engeneering Review, 10 (2): 115–152, 1995.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mathis, P., Schreck, P., Dufourd, JF. (1998). YAMS: A Multi-Agent System for 2D Constraint Solving. In: Brüderlin, B., Roller, D. (eds) Geometric Constraint Solving and Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58898-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58898-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63781-0

  • Online ISBN: 978-3-642-58898-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics