Advertisement

Was hat Squalus acanthias mit der Physiologie des Menschen zu tun?

  • Rainer Greger
Chapter
  • 11 Downloads
Part of the Schriften der Mathematisch-naturwissenschaftlichen Klasse der Heidelberger Akademie der Wissenschaften book series (SCHRIFTMATH, volume 2)

Zusammenfassung

Die Erforschung physiologischer Grundmechanismen hat stets davon profitiert, daβ Grundlagenforscher sich nicht auf eine Spezies festnageln lassen. Wo wäre unser Verständnis elektrischer Phänomene bei Vertebraten, wenn es keine mee- resbiologischen Labors gegeben hätte (13)? Wo wäre das Verstandnis der Synap- senfunktion, wenn Otto Loewi 1921 nicht seine Beobachtungen am Froschherzen gemacht hätte (43)? Wo wäre unsere Erklarung für die Ausbildung und Fortlei- tung des Aktionspotentials, wenn Hodgkin und Huxley 1952 nicht das dicke Tin- tenfischaxon für ihre Versuche gewählt hätten (33)? Die eingangs gestellte Frage, das Thema dieser Arbeit, leiten sich aus dem Kroghschen Prinzip (August Krogh 1874–1949) ab, stets die Spezies zu wählen, bei der der zu untersuchende Mecha- nismus in besonderer Perfektion realisiert ist. Insofern verdankt mein For- schungsgebiet, die Physiologie der Niere und der anderen Salz-transportierenden Epithelien, viele Erkenntnisse der Erforschung unterschiedlichster Spezies. Die Rektaldrüse des Dornhaies (Squalus acanthias) hat dabei eine besondere Rolle gespielt. Dient dieses Organ doch dazu, groβe Mengen an NaCl, die mit der Nah- rung (und Meerwasser) aufgenommen werden, durch exokrine Sekretion auszu- scheiden. Daβ bei diesem Sekretionsprozess aktiver Ionentransport mit Hilfe der (Na++K+)-ATPase im Spiel ist, war schon relativ früh klar geworden (62). In der Tat ist dieses Drüsengewebe, neben dem äuβeren Nierenmark eine besonders rei- che Quelle für die Reinigung der (Na++K+)-ATPase (35,62). Im Verlauf der letzten 50 Jahre haben sich Erkenntnisse an diesem Organ und an der Niere verschiede- ner Spezies stets befruchtet und dazu beigetragen, daβ wir heute über epithelia- len Ionentransport weit mehr wissen, als über viele andere Systeme unseres Kör- pers. Wer konnte schon ahnen, daβ diese Erkenntnisse nicht nur für das Verständnis der Nierenfunktion Bedeutung gewinnen würden, sondern auch für das Verständnis der Wirkung von sog. Diuretika (also harntreibender Substanzen), für generelle Mechanismen der Steuerung von Säure- Basenhaushalt und Elektro- lythaushalt beim Menschen; daβ sie uns Zugang zum Verständnis der Pathophy- siologie der Erbkrankheit Mukoviszidose verschaffen wtirden und daβ sich hier- bei die Erforschung der einzelnen beteiligten Ionentransporter, ihre Steuerung und pharmakologische Beeinflussung sowie auch deren genetische verursachte Störungen zwangsläufig ergeben würden? Davon handelt dieser Beitrag, wobei zu bedenken ist, daβ er bewuβt aus der subjektiven Sicht des Autors ein Bild der ver- gangenen 18 Jahre zu vermitteln versucht.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturhinweise

  1. 1.
    Ambudkar SV, Lelong IH, Zhang J, Cardarelli CO, Gottesman MM, Pastan I (1992) Partial purification and reconstitution of the human multidrug-resistance pump: characterization of the drug-stimulatable ATP hydrolysis. Proc Natl Acad Sci USA 89:8472–8476PubMedCrossRefGoogle Scholar
  2. 2.
    Barhanin J, Lesage F, Guillemare E, Fink M, Lazdunski M, Romey G (1996) KVLQT1 and IsK (minK) proteins associate to form the IKs cardiac potassium current. Nature 384:78–80PubMedCrossRefGoogle Scholar
  3. 3.
    Bartter RC (1969) So-called Bartter's syndrome. New Engl J Med 281:1483–1494PubMedCrossRefGoogle Scholar
  4. 4.
    Bleich M, Briel M, Busch AE, Lang HJ, Gerlach U, Gögelein H, Greger R, Kunzelmann K (1997) KvLQT1 K+ channels are inhibited by the K+ channel blocker 293B. Pfluegers Arch Eur J Physiol submittedGoogle Scholar
  5. 5.
    Bleich M, Schlatter E, Greger R (1990) The luminal K+ channel of the thick ascending limb of Henle's loop. Pfluegers Arch Eur J Physiol 415:449–460CrossRefGoogle Scholar
  6. 6.
    Burg MB, Green N (1973) Function of the thick ascending limb of Henle's loop. Am J Physiol 224(3):659–668PubMedGoogle Scholar
  7. 7.
    Burg MB, Stoner L, Cardinal J, Green N (1973) Furosemide effect on isolated perfused tubules. Am J Physiol 225:119–124PubMedGoogle Scholar
  8. 8.
    Busch AE, Suessbrich H, Waldegger S, Sailer E, Greger R, Lang HJ, Lang F, Gibson KJ, Maylie JG (1996) Inhibition of IKs in guinea pig cardiac myocytes and guinea pig IsK channels by the chromanol 293B. Pfluegers Arch Eur J Physiol 432:1094–1096CrossRefGoogle Scholar
  9. 9.
    Cabantchik ZI, Greger R (1992) Chemical probes for anion transporters of mammalian cell membranes. Am J Physiol 262:C803–C827Google Scholar
  10. 10.
    Cuthbert AW, Halstead J, Ratcliff R, Colledge WH, Evans MJ (1995) The genetic advantage hypothesis in cystic fibrosis heterocygotes: a murine study. J Physiol (Lon) 482. 2:449–454Google Scholar
  11. 11.
    Derst C, Konrad M, Kockerling A, Károlyi L, Deschenes G, Daut J, Karschin A, Seyberth HW (1997) Mutations in the ROMK gene in antenatal Bartter syndrome are associated with impaired K+ channel function. Biochem Biophys Res Commun 203:641–645CrossRefGoogle Scholar
  12. 12.
    Di Stefano A, Wittner M, Schlatter E, Lang HJ, Englert HC, Greger R (1985) Diphenyla-mine-2-carboxylate, a blocker of the Cl-conductive pathway in Cl-transporting epit-helia. Pfluegers Arch Eur J Physiol 405(Suppl.1):S95–S100Google Scholar
  13. 13.
    du Bois-Reymond E, Dohrn A (1985) Briefwechsel. Springer-Verlag, Berlin Heidelberg, pp 1–322Google Scholar
  14. 14.
    Gamba G, Miyanoshita A, Lombardi M, Lytton J, Lee WS, Hediger MA, Hebert SC (1994) Molecular cloning, primary structure, and charecterization of two members of the mammalian electroneutral sodium-(potassium)-chloride cotransporter family expressed in kidney. J Biol Chem 269:17713–17722PubMedGoogle Scholar
  15. 15.
    Geek P, Pietrzyk C, Burckhardt BC, Pfeiffer B, Heinz E (1980) Electrically silent cotrans-port of Na+, K+ and Cl-in Ehrlich cells. Biochim Biophys Acta 600:432–447CrossRefGoogle Scholar
  16. 16.
    Goodchild MC, Dodge JA (1993) Cystic fibrosis, LondomBaillière Tindall. 2nd edn, pp 1–212Google Scholar
  17. 17.
    Gogelein H, Greger R, Schlatter E (1987) Potassium channels in the basolateral membrane of the rectal gland of Squalus acanthias. Regulation and inhibitors. Pfluegers Arch Eur J Physiol 409:107–113CrossRefGoogle Scholar
  18. 18.
    Gögelein H, Schlatter E, Greger R (1987) The “small” conductance chloride channel in the luminal membrane of the rectal gland of the dogfish (Squalus acanthias). Pfluegers Arch Eur J Physiol 409:122–125CrossRefGoogle Scholar
  19. 19.
    Greger R (1981) Chloride reabsorption in the rabbit cortical thick ascending limb of the loop of Henle. A sodium dependent process. Pfluegers Arch Eur J Physiol 390:38–43CrossRefGoogle Scholar
  20. 20.
    Greger R (1981) Cation selectivity of the isolated perfused cortical thick ascending limb of Henle's loop of rabbit kidney. Pfluegers Arch Eur J Physiol 390:30–37CrossRefGoogle Scholar
  21. 21.
    Greger R (1985) Ion transport mechanisms in thick ascending limb of Henle's loop of mammalian nephron. Physiol Rev 65:760–797PubMedGoogle Scholar
  22. 22.
    Greger R (1986) Chlorid-transportierende Epithelien. In: AnonymousPhysiologie Aktu-ell, Band 2. Gustav Fischer Verlag, Stuttgart New York, pp 47–58Google Scholar
  23. 23.
    Greger R, Gögelein H, Schlatter E (1987) Potassium channels in the basolateral membrane of the rectal gland of the dogfish (Squalus acanthias). Pfluegers Arch Eur J Physiol 409:100–106CrossRefGoogle Scholar
  24. 24.
    Greger R, Nitschke RB, Lohrmann E, Burhoff I, Hropot M, Englert HC, Lang HJ (1991) Effects of chloride channel blockers on equivalent short circuit current in rabbit colon. Pfluegers Arch Eur J Physiol 419:190–196CrossRefGoogle Scholar
  25. 25.
    Greger R, Oberleithner H, Schlatter E, Cassola AC, Weidtke C (1983) Chloride activity in cells of isolated perfused cortical thick ascending limbs of rabbit kidney. Pfluegers Arch Eur J Physiol 399:29–34CrossRefGoogle Scholar
  26. 26.
    Greger R, Schlatter E (1981) Presence of luminal K+, a prerequisite for active NaCl transport in the thick ascending limb of Henle's loop of rabbit kidney. Pfluegers Arch Eur J Physiol 392:92–94CrossRefGoogle Scholar
  27. 27.
    Greger R, Schlatter E (1983) Cellular mechanism of the action of loop diuretics on the thick ascending limb of Henle's loop. Klin Wochenschr 61:1019–1027PubMedCrossRefGoogle Scholar
  28. 28.
    Greger R, Schlatter E, Gogelein H (1986) Sodium chloride secretion in rectal gland of dogfish Squalus acanthias. News Physiol Sci 1:134–136Google Scholar
  29. 29.
    Greger R, Schlatter E, Gögelein H (1987) Chloride channels in the luminal membrane of the rectal gland of the dogfish (Squalus acanthias). Properties of the “larger” conductance channel. Pfluegers Arch Eur J Physiol 409:114–121Google Scholar
  30. 30.
    Greger R, Windhorst U (1996) Comprehensive Human Physiology, from Cellular Mechanisms to Integration. Springer-Verlag, Heidelberg New York, in pressGoogle Scholar
  31. 31.
    Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pfluegers Arch Eur J Physiol 391:85–100CrossRefGoogle Scholar
  32. 32.
    Ho K, Nichols CG, Lederer WJ, Lytton J, Vassilev PM, Kanazirska MV, Hebert SC (1993) Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature 362:31–38PubMedCrossRefGoogle Scholar
  33. 33.
    Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol (Lon) 117:500–544Google Scholar
  34. 34.
    Hwang TC, Lu L, Zeitlin L, Gruenert DC, Huganir R, Guggino WB (1989) Cl-channels in CF: lack of activation by protein kinase C and cAMP-dependent protein kinase. Science 244:1351–1353PubMedCrossRefGoogle Scholar
  35. 35.
    Jorgensen PL (1980) Sodium potassium ion pump in kidney tubules. Physiol Rev 60:864–917PubMedGoogle Scholar
  36. 36.
    Koefoed-Johnsen V, Ussing HH (1958) The nature of the frog skin potential. Acta Physiol Scand 42:298–308PubMedCrossRefGoogle Scholar
  37. 37.
    Krick W, Disser J, Hazama A, Burckhardt G, Frömter E (1991) Evidence for a cytosolic inhibitor of epithelial chloride channels. Pfluegers Arch Eur J Physiol 418:491–499CrossRefGoogle Scholar
  38. 38.
    Kunzelmann K, Grolik M, Kubitz R, Greger R (1992) cAMP-dependent activation of small-conductance Cl-channels in HT29 colon carcinoma cells. Pfluegers Arch Eur J Physiol 421:230–237CrossRefGoogle Scholar
  39. 39.
    Kunzelmann K, Kiser GL, Schreiber R, Riordan JR (1997) Inhibition of epithelial Na+ currents by intracellular domains of the cystic fibrosis transmembrane regulator. FEBS Lett 400:341–344PubMedCrossRefGoogle Scholar
  40. 40.
    Kunzelmann K, Pavenstädt H, Greger R (1989) Properties and regulation of chloride channels in cystic fibrosis and normal airway cells. Pfluegers Arch Eur J Physiol 415:172–182CrossRefGoogle Scholar
  41. 41.
    Kunzelmann K, Tilmann M, Hansen CP, Greger R (1991) Inhibition of epithelial chloride channels by cytosol. Pfluegers Arch Eur J Physiol 418:479–490CrossRefGoogle Scholar
  42. 42.
    Li M, McCann JD, Liedtke CM, Nairn AC, Greengard P, Welsh MJ (1988) Cyclic AMP-dependent protein kinase opens chloride channels in normal but not cystic fibrosis airway epithelium. Nature 331:358–360PubMedCrossRefGoogle Scholar
  43. 43.
    Loewi O (1921) Über humorale Übertragbarkeit der Herznervenwirkung. Pfluegers Arch Eur J Physiol 189:239–242CrossRefGoogle Scholar
  44. 44.
    Lohrmann E, Burhoff I, Nitschke RB, Lang HJ, Mania D, Englert HC, Hropot M, Warth R, Rohm W, Bleich M, Greger R (1995) A new class of inhibitors of cAMP-mediated Cl secretion in rabbit colon, acting by the reduction of cAMP-activated K+ conductance. Pfluegers Arch Eur J Physiol 429:517–530CrossRefGoogle Scholar
  45. 45.
    Mall M, Hipper A, Greger R, Kunzelmann K (1996) Wild type CFTR but not A508 inhibits Na+ channels in Xenopus oocytes. FEBS Lett 381:47–52PubMedCrossRefGoogle Scholar
  46. 46.
    Mall M, Kunzelmann K, Hipper A, Busch AE, Greger R (1996) Overexpression and cAMP stimulation of CFTR in Xenopus oocytes activates a chromanol inhibitable K+ conductance. Pfluegers Arch Eur J Physiol 432:516–522CrossRefGoogle Scholar
  47. 47.
    McNicholas CM, Guggino WB, Schwiebert EM, Hebert SC, Giebisch G, Egan ME (1996) Sensitivity of a renal K+ channel (R0MK2) to the inhibitory sulfonylurea compound glibenclamide is enhanced by coexpression with the ATP-binding cassette transporter cystic fibrosis transmembrane regulator. Proc Natl Acad Sci USA 93:8083–8088PubMedCrossRefGoogle Scholar
  48. 48.
    Noda M, Shimizu S, Tanabe T, Takai T, Kayano T, Ikeda T, Takahashi H, Nakayama H, Kanaoka Y, Minamino N, Kangawa K, Matsuo H, Raftery MA, Hirose T, Inayama S, Ha-yashida H, Miyata T, Numa S (1984) Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312:121–127PubMedCrossRefGoogle Scholar
  49. 49.
    Payne JA, Xu JC, Haas M, Lytle CY, Ward D, Forbush B (1995) Primary structure, functional expression, and chromosomal localization of the bumetanide-sensitive Na-K-Cl cotransporter in human colon. J Biol Chem 270:17977–17985PubMedCrossRefGoogle Scholar
  50. 50.
    Quinton PM (1983) Chloride impermeability in cystic fibrosis. Nature 301:421–422PubMedCrossRefGoogle Scholar
  51. 51.
    Riordan JR (1993) The cystic fibrosis transmembrane conductance regulator. Annu Rev Physiol 55:609–630PubMedCrossRefGoogle Scholar
  52. 52.
    Riordan JR, Rommens JM, Kerem B-S, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou J-L, Drumm ML, Iannuzzi MC, Collins FS, Tsui L-C (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–1073PubMedCrossRefGoogle Scholar
  53. 53.
    Rocha AS, Kokko JP (1973) Sodium chloride and water transport in the medullary thick ascending limb of Henle. J Clin Invest 52:612–623PubMedCrossRefGoogle Scholar
  54. 54.
    Rosenfeld MA, Yoshimura K, Trapnell BC, Yoneyama K, Rosenthal ER, Dalemans W, Fu-kayama M, Bargon J, Stier LE, Stratford-Perricaudet L, Perricaudet M, Guggino WB, Pa-virani A, Lecocq JP, Crystal RG (1992) In vivo transfer of the human cystic fibrosis transmembrane conductance regulator gene to the airway epithelium. Cell 68:143–155PubMedCrossRefGoogle Scholar
  55. 55.
    Sanguinetti MC, Curran ME, Zou A, Shen J, Spector PS, Atkinson DL, Keating MT (1996) Coasembly of KVLQT1 and minK (IsK) proteins to form cardiac IKs potassium channel. Nature 384:80–83PubMedCrossRefGoogle Scholar
  56. 56.
    Schlatter E, Bleich M, Hirsch J, Greger R (1993) pH-sensitive K+ channels in the distal nephron. Nephrol Dial Transplant 8:488–490PubMedGoogle Scholar
  57. 57.
    Schoumacher RA, Shoemaker RL, Halm DR, Tallant EA, Wallace RW, Frizzell RA (1987) Phosphorylation fails to activate chloride channels from cystic fibrosis airway cells. Nature 330:752–754PubMedCrossRefGoogle Scholar
  58. 58.
    Schreiber R, Greger R, Kunzelmann K (1997) Cystic fibrosis transmembrane conductance regulator activates water conductance in Xenopus oocytes. Pfluegers Arch Eur J Physiol submittedGoogle Scholar
  59. 59.
    Schulz I (1969) Micropuncture studies of sweat formation in cystic fibrosis patients. J Clin Invest 48:1470–1477PubMedCrossRefGoogle Scholar
  60. 60.
    Schulz I, Fromter E (1968) Mikropunktionsuntersuchungen an Schweiβdrüsen von Mukviszidosepatienten und gesunden Versuchspersonen. In: Windhofer A, Stephan U. (eds) Mucoviscidose Cystische Fibrose II. G. Thieme Verlag, pp 12–21Google Scholar
  61. 61.
    Simon DB, Karet FE, Hamdan JM, Di Pietro A, Sanjad SA, Lifton RP (1996) Bartter's syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na-K-2C1 cotransporter NKCC2. Nature Genetics 13:183–188PubMedCrossRefGoogle Scholar
  62. 62.
    Skou JC (1992) The Na-K pump. News Physiol Sci 7:95–100Google Scholar
  63. 63.
    Stutts MJ, Canessa CM, Olsen JC, Hamrick M, Cohn JA, Rossier BC, Boucher RC (1995) CFTR as a CAMP-dependent regulator of sodium channels. Science 269:847–850PubMedCrossRefGoogle Scholar
  64. 64.
    Suessbrich H, Rizzo M, Waldegger S, Lang F, Lang HJ, Kunzelmann K, Ecke D, Bleich M, Greger R, Busch AE (1996) Inhibition of IsK channels bycromanols-impact on the physiological role of IsK channels in cAMP-mediated Cl secretion of the colon. FEBS Lett 396:271–275PubMedCrossRefGoogle Scholar
  65. 65.
    Tabcharani JA, Chang XB, Riordan JR, Hanrahan JW (1991) Phosphorylation-regulated Cl-channel in CHO cells stably expressing the cystic fibrosis gene. Nature 352:628–631PubMedCrossRefGoogle Scholar
  66. 66.
    Wang W, Sackin H, Giebisch G (1992) Renal potassium channels and their regulation. Annu Rev Physiol 54:81–96PubMedCrossRefGoogle Scholar
  67. 67.
    Wangemann P, Wittner M, Di Stefano A, Englert HC, Lang HJ, Schlatter E, Greger R (1986) Cl-channel blockers in the thick ascending limb of the loop of Henle. Structure activity relationship. Pfluegers Arch Eur J Physiol 407(Suppl 2):S128–S141Google Scholar
  68. 68.
    Warth R, Riedemann N, Bleich M, van Driessche W, Busch AE, Greger R (1996) The cAMP regulated K+ conductance of rat colonic crypt base cells. Pfluegers Arch Eur J Physiol 432:81–88CrossRefGoogle Scholar
  69. 69.
    Welsh MJ (1987) Electrolyte transport by airway epithelia. Physiol Rev 67:1143–1184PubMedGoogle Scholar
  70. 70.
    Zabner J, Couture LA, Gregory RJ, Graham SM, Smith AE, Welsh MJ (1993) Adenovirus-mediated gene transfer transiently corrects the chloride transport defect in nasal epithelia of patients with cystic fibrosis. Cell 75:207–216PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Rainer Greger
    • 1
  1. 1.Physiologisches Institut der Albert-Ludwigs-UniversitatFreiburgGermany

Personalised recommendations