Skip to main content

Piecewise Linear (Pre-)wavelets on Non-uniform Meshes

  • Conference paper
Book cover Multigrid Methods V

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 3))

Abstract

In this paper, an explicit construction of compactly supported prewavelets on linear finite element spaces is introduced on non-uniform meshes on polyhedron domains and on boundaries of such domains. The obtained basas are stable in the Sobolev spaces Hr for |r| < 3/2. The only condition we need is that of uniform refinements. Compared to existing prewavelets bases on uniform meshes, with our construction the basis transformation from wavelet- to nodal basis (the wavelet transform) can be implemented more efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Cohen, I. Daubechies, and J.C. Feauveau. Biorthogonal bases of compactly supported wavelets. Comm. Pur. Appl. Math., 45:485–560, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  2. J.M. Carnicer, W. Dahmen, and J.M. Pena. Local decomposition of refinable spaces and wavelets. Appl. and Comp. Harm. Anal., 3:127–153, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  3. C.K. Chui and J.Z. Wang. On compactly supported spline wavelets and a duality principle. Trans. Amer. Math. Soc., 330:903–916, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  4. W. Dahmen, A. Kunoth, and R. Schneider. Operator equations, multiscale concepts and complexity. Technical report, WIAS-Berlin, December 1995.

    Google Scholar 

  5. W. Dahmen, A. Kunoth, and K. Urban. Biorthogonal spline-wavelets on the interval — stability and moment conditions. Technical report, RWTH Aachen, August 1996.

    Google Scholar 

  6. W. Hackbusch. The frequency decomposition multi-grid method I. Application to anisotropic equations. Numer. Math., 56:229–245, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Junkherr. Multigrid methods for weakly singular integral equations of the first kind. Christian-Albrechts-Universität Kiel, Germany, 1994. PhD. thesis (in German).

    Google Scholar 

  8. U. Kotyczka and P. Oswald. Piecewise linear prewavelets of small support. In C.K. Chui and L.L. Schumaker, editors, Approximation Theory VIII. World Scientific Publishing Co. Inc., 1995.

    Google Scholar 

  9. R. Lorentz and P. Oswald. Constructing economical Riesz bases for Sobolev spaces. GMD-bericht 993, GMD, Sankt Augustin, May 1996.

    Google Scholar 

  10. R. Lorentz and P. Oswald. Multilevel finite element Riesz bases in Sobolev spaces. In P. Bj∅rstad, M. Espedal, and Keyes D., editors, Proc. 9th. Symp. on Domain Decomposition Methods. John Wiley & Sons Ltd., 1996.

    Google Scholar 

  11. P. Oswald. Multilevel finite element approximation: Theory and applications. B.G. Teubner, Stuttgart, 1994.

    Book  MATH  Google Scholar 

  12. R. Schneider. Multiskalen-und Wavelet-Matrixkompression: Analysisbasierte Methoden zur Lösung großer vollbesetzter Gleigungssysteme. TH Darmstadt, Germany, 1995. Habilitationschrift (in German).

    Google Scholar 

  13. R.P. Stevenson. Experiments in 3D with a three-point hierarchical basis preconditioner. Appl. Numer. Math, 1996. To appear.

    Google Scholar 

  14. R.P. Stevenson. A robust hierarchical basis preconditioner on general meshes. Numer. Math., 1996. To appear.

    Google Scholar 

  15. R.P. Stevenson. Stable three-point wavelet bases on general meshes. Technical Report 9627, University of Nijmegen, October 1996. Submitted to Numer. Math.

    Google Scholar 

  16. W. Sweldens. The lifting scheme: A construction of second generation wavelets. Technical Report 1995:6, Industrial Mathematics Initiative, Department of Mathematics, University of South Carolina, 1995.

    Google Scholar 

  17. P.S. Vassilevski and J. Wang. Stabilizing the hierarchical basis by approximate wavelets, II: Implementation and numerical experiments. CAM report 95-48, Department of Mathematics, UCLA, Los Angeles, 1995. to appear in SIAM J. Sci.; Comput.

    Google Scholar 

  18. P.S. Vassilevski and J. Wang. Stabilizing the hierarchical basis by approximate wavelets, I: Theory. Num. Lin. Alg. with Appl., 1996. To appear.

    Google Scholar 

  19. H. Yserentant. On the multi-level splitting of finite element spaces. Numer. Math., 49:379–412, 1986.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stevenson, R. (1998). Piecewise Linear (Pre-)wavelets on Non-uniform Meshes. In: Hackbusch, W., Wittum, G. (eds) Multigrid Methods V. Lecture Notes in Computational Science and Engineering, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58734-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58734-4_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63133-0

  • Online ISBN: 978-3-642-58734-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics