Advertisement

Lyotrope flüssigkristalline Phasen Anwendungen in Wasch-, Spül- und Reinigungsmitteln, in der Kosmetik und in technischen Prozessen

  • T. Engels
  • W. von Rybinski
Chapter
  • 74 Downloads

Zusammenfassung

Flüssigkristalline Phasen haben in den vergangenen Jahren ihren Weg in viele Anwendungen gefunden. Hierzu gehören elektrooptische Anzeigen, Sensoren, optische Schalter und die Thermographie. Flüssigkristalline Strukturen, die von amphiphilen Molekülen gebildet werden, sind die Grundlage für Emulsionen und sind systematisch für die Pharmazie, Kosmetik, Nahrungsmittelindustrie sowie chemische und ölverarbeitende Industrie untersucht worden.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Bergeron V, Radke CJ (1992) Equilibrium measurements of oscillatory disjoining pressures in aqueous foam films. Langmuir 8:3020–3026CrossRefGoogle Scholar
  2. 2.
    Nikolov AD, Wasan DT (1989) Ordered micelle structuring in thin films formed from anionic surfactant solutions I. Experimental und II. Model development. J Colloid Interface Sci 133: 1 und 13CrossRefGoogle Scholar
  3. 3.
    Friberg S (1978) Liquid crystals and foam. Advances in Liquid Crystals (vol 3): 149. Academic Press, New YorkGoogle Scholar
  4. 4.
    Saito H, Friberg S (1975) Liquid Crystals. In: Chandrasekhar S (ed) Indiana Academy of ScienceGoogle Scholar
  5. 5.
    Suzuki T, Tsutsumi H, Ishida A (1982) Secondary droplet emulsion: Contribution of liquid crystal formation to physicochemical properties and skin moisturizing effect of cosmetic emulsion. Abstracts 1,12th Int Congress IFSCC Paris, pp 117–136Google Scholar
  6. 6.
    Barry BW (1971) Structure and rheology of emulsions stabilized by mixed emulsifiers. Rheol Acta 10: 96–105CrossRefGoogle Scholar
  7. 7.
    Friberg S, Mandell L, Larsson M (1969) Mesomorphous phases, a factor of importance for the properties of emulsions. J Colloid Interface Sci 29:155CrossRefGoogle Scholar
  8. 8.
    Junginger H, Akkermans AAMD, Heering W (1984) The ratio of interlamellarly fixed water to bulk water in o/w creams. J Soc Cosmet Chem 35:45–57Google Scholar
  9. 9.
    Junginger H (1984) Strukturuntersuchungen an Stearatcremes. Pharm Ind 46, 7: 758–762Google Scholar
  10. 10.
    Junginger H (1991) Kristalline Gelstrukturen in Cremes. Dtsch Apoth Ztg 131/38: 1933–1941Google Scholar
  11. 11.
    Larsson K, Dejmek P (1990) Crystal and liquid crystal structures of lipids. In: Larsson K, Friberg S (eds) Food Emulsions, 2nd edn. Marcel Dekker, New York, pp 97–125Google Scholar
  12. 12.
    Van de Pas JC, Olsthoorn TM, Schepers FJ, deVries CHE, Buytenhek CJ (1994) Colloidal effects of anchored polymers in lamellar liquid-crystalline dispersions. Coll Surf A 85: 221–236CrossRefGoogle Scholar
  13. 13.
    Larsson K (1978) Stability of emulsions formed by polar lipids. Prog Chem Fats Lipids 16:163CrossRefGoogle Scholar
  14. 14.
    Shinoda K, Friberg S (1986) Emulsions and solubilization. J Wiley, ChichesterGoogle Scholar
  15. 15.
    Engels T, Förster T, von Rybinski W (1995) The influence of coemulsifier type on the stability of water-in-oil emulsions, Coll Surf A Physicochem and Engin. Aspects 99:141CrossRefGoogle Scholar
  16. 16.
    Friberg S, El-Nokakly MA (1985) Surfactants in Cosmetics. In: Rieger MM (ed), Marcel Dekker, New York, pp 55–86Google Scholar
  17. 17.
    Friberg S, Solans C (1986) Surfactant association structures and the stability of emulsions and foams. Langmuir 2: 121–126CrossRefGoogle Scholar
  18. 18.
    Friberg S (1976) In: Friberg S (ed) Food Emulsions. Marcel Dekker, New York, pp 25–34Google Scholar
  19. 19.
    Friberg S (1979) Three-phase emulsions. J Soc Cosmet Chem 30: 309–319Google Scholar
  20. 20.
    Krog N, Lauridsen JB (1976) Food emulsifiers and their associations with water. In: Friberg S (ed) Food Emulsions. Marcel Dekker, New York, pp 67–115Google Scholar
  21. 21.
    Friberg S, Jansson PO, Cederberg E (1976) Surfactant association structure and emulsion stability. J Colloid Interface Sci 55: 614CrossRefGoogle Scholar
  22. 22.
    Friberg S (1990) Micelles, microemulsions, liquid crystals, and the structure of stratum corneum lipids. J Soc Cosmet Chem 41:155–171Google Scholar
  23. Friberg S, Suhaimi H, Goldsmith LB, Rhein LL (1988) Stratum corneum lipids in a model structure. J Disp Sci Techn 9: 371-389Google Scholar
  24. 23.
    Friberg S, Suhaimi H, Goldsmith LB, Rhein LL (1988) Stratum corneum lipids in a model structure. J Disp Sci Techn 9:371–389CrossRefGoogle Scholar
  25. 24.
    Friberg S, Osborne DW (1985) Small angle x-ray diffraction patterns of stratum corneum and a model structure for its lipids. J Disp Sci Techn 6:485–495CrossRefGoogle Scholar
  26. 25.
    Loll P (1953) Liquid Crystals in Cosmetics Emulsions. ICI-Publication. IN-Cosmetic, LondonGoogle Scholar
  27. 26.
    Münzel K (1953) Versuch einer Systematik der Salben nach galenischen Gesichtspunkten. Pharm Acta Helv 28: 320–336Google Scholar
  28. 27.
    Junginger H, Boddé H (1985) Gel structures of dermatological vehicles and their influence on drug release. In: Breimer DD, Speiser P (eds) Topics in Pharmaceutical Sciences. Elsevier Science Publ, Amsterdam, pp 329–343Google Scholar
  29. 28.
    Kavaliunas DR, Frank SG (1978) Liquid crystal stabilization of multiple emulsions. J Colloid Interface Sci 66: 586CrossRefGoogle Scholar
  30. 29.
    Tomine R, Le Hen Ferrenbach C (1998) Multiple emulsions. Abstract of the Emulsion symposium. Henkel KGaA, DüsseldorfGoogle Scholar
  31. 30.
    Ng SM, Frank SG (1982) Formation of multiple emulsions in a four-component system containing nonionic surfactants. J Dispersion Sci Technol 3(3): 217–231CrossRefGoogle Scholar
  32. 31.
    Suzuki T, Tsutsumi H, Ishida A (1984) Secondary droplet emulsion: mechanism and effects of liquid crystal formation on o/w emulsion. J Disp Sci Techn 5:119–141CrossRefGoogle Scholar
  33. 32.
    Schulman JH, Cockbain EG (1940) Part I. Molecular complex formation and the stability of oil in water emulsions. Trans Faraday Soc 36:651CrossRefGoogle Scholar
  34. 33.
    Void RD, Mittal KL (1972) The effect of lauryl alcohol on the stability of oil-in-water emulsions. J Colloid Int Sci 38:451CrossRefGoogle Scholar
  35. 34.
    Barry BW (1970) Rheology of emulsions stabilized by sodium dodecyl sulfate / long-chain alcohols. J Colloid Interface Sci 32:551CrossRefGoogle Scholar
  36. 35.
    Barry BW, Saunders GM (1970) The self-bodying action of the mixed emulsifier cetrimide/ cetostearyl alcohol. J Colloid Interface Sci 34: 300CrossRefGoogle Scholar
  37. 36.
    Barry BW, Saunders GM (1972) Rheology of systems containing cetomacrogol 1000-ceto-stearyl alcohol, I. Self-bodying action. J Colloid Interface Sci 38:616CrossRefGoogle Scholar
  38. 37.
    Barry BW, Saunders GM (1972) Rheology of systems containing cetomacrogol 1000-ceto-stearyl alcohol, II. Variation with temperature. J Colloid Interface Sci 38: 626CrossRefGoogle Scholar
  39. 38.
    Wahlgren S, Lindstrom AL, Friberg S (1984) Liquid crystals as a potential ointment vehicle. J Pharm Sci 73:1484–86CrossRefGoogle Scholar
  40. 39.
    New RRC (ed) (1990) Liposomes-a practical approach. Oxford University Press, New YorkGoogle Scholar
  41. 40.
    Philippot JR, Schuber F (eds) (1995) Liposomes as tools in basic research and industry. CRC Press, Boca RatonGoogle Scholar
  42. 41.
    Karsa DR, Stephenson RA (eds) (1993) Encapsulation and controlled release. Royal Society of Chemistry, CambridgeGoogle Scholar
  43. 42.
    Machy P, Leserman L (1987) Liposomes in cell biology and pharmacology. John Libbey, LondonGoogle Scholar
  44. 43.
    Gregoriadis G (ed) (1992) Targeted drug delivery and biological interactions. Liposome Technology, 2nd edn, vol III. CRC Press, New YorkGoogle Scholar
  45. 44.
    Förster T (1996) Principles of emulsion formation. In: Rieger (ed) Surfactants in Cosmetics. Marcel Dekker, p 105Google Scholar
  46. 45.
    Förster T, Schambil F, Tesmann H (1990) Emulsification by the phase inversion temperature method: the role of self-bodying agents and the influence of oil polarity. Int J Cosmetic Sci 12: 217CrossRefGoogle Scholar
  47. 46.
    Förster T, Schambil F, von Rybinski W (1992) Production of fine disperse and long-term stable oil-in-water emulsions by the phase inversion temperature method. J Disp Sci Techn 13:183CrossRefGoogle Scholar
  48. 47.
    Förster T, von Rybinski W, Wadle A (1995) Influence of microemulsion phases on the preparation of fine-disperse emulsions. Adv Colloid Interface Sci 58:119CrossRefGoogle Scholar
  49. 48.
    Sagitani H (1988) Formation of o/w emulsions by surfactant phase emulsification and the solution behavior of nonionic surfactant system in the emulsification process. J Disp Sci Techn 9:115–129CrossRefGoogle Scholar
  50. 49.
    Suzuki T, Takei H, Yamazaki S (1989) Formation of fine three-phase emulsions by the liquid crystal emulsification method with arginine-branched monoalkyl phosphate. J Colloid Interface Sci 129:491–500CrossRefGoogle Scholar
  51. 50.
    Suzuki T, Nakamura M, Sumida H, Shigeta A (1992) Liquid crystal make-up remover: Conditions of formation and its cleansing mechanisms. J Soc Cosmet Chem 43:21–36Google Scholar
  52. 51.
    Vona SA, Friberg SE, Brin A (1998) Location of fragrance molecules within lamellar liquid crystals. Coll and Surf A 137: 79–89CrossRefGoogle Scholar
  53. 52.
    Friberg SE (1998) Fragrance compounds and amphiphilic association structures. Adv Colloid Interface Sci 75:181–214CrossRefGoogle Scholar
  54. 53.
    Brooks G, Idson I (1991) Skin lipids. Int J Cosm Sci 13:103–113CrossRefGoogle Scholar
  55. 54.
    Andree A, Krings P (1976) Anwendungstechnische Eigenschaften der wichtigsten Tensid-typen. In: Waschmittelchemie. Hüthig, Heidelberg, S 84Google Scholar
  56. 55.
    Lang JC, Morgan RD (1980) Nonionic surfactant mixtures. J Chem Phys 73: 5849CrossRefGoogle Scholar
  57. 56.
    Mitchell DJ, Tiddy GJT, Warring L, Bostock T, McDonald MP (1983) Phase behavior of polyoxyethylene surfactants with water. J Chem Soc, Faraday Trans 1:79,975Google Scholar
  58. 57.
    Kahlweit M, Strey R (1985) Phasenverhalten ternärer Systeme des Typs H2O-Öl-nicht-ionisches Amphiphil. Angew Chem 24: 654CrossRefGoogle Scholar
  59. 58.
    Kling W, Lange H (1960) Theory of the Washing Process. J Am Oil Chem Soc 37: 30CrossRefGoogle Scholar
  60. 59.
    Kielman HS, van Steen JPF (1979) Surface active agents. London Society of Chemical Industries, p 191Google Scholar
  61. 60.
    Miller CA, Raney KH (1993) Solubilization-emulsification mechanisms of detergency. Colloids Surf. A: Physicochem Eng Aspects: 74, 169CrossRefGoogle Scholar
  62. 61.
    van de Pas JC, Buytenhek CJ, Brown LF (1994) Rec Trav Chim 113:231Google Scholar
  63. 62.
    Schwuger MJ (1984) Interfacial and performance properties of sulfated polyoxyethylenated alcohols. In: Rosen MJ (ed) Structure/performance relationships in surfactants. ACS Symp Ser 253, Washington DC, p3Google Scholar
  64. 63.
    Kahlweit M, Strey R (1985) In: Rosano HL (ed) Proceedings of Vth International Conference on Surface and Colloid Science. Potsdam, New YorkGoogle Scholar
  65. 64.
    Schambil F, Schwuger MJ (1987) Correlation between the phase behavior of ternary systems and removal of oil in the Washing process. Colloid Polymer Sci 265:1009CrossRefGoogle Scholar
  66. 65.
    Munoz J, Gallegos C, Flores V (1986) Rheological behavior of aqueous systems containing polyoxyethylene fatty alcohols with different HLB. J Dispersion Sci Technol 7:453CrossRefGoogle Scholar
  67. 66.
    Hill K, von Rybinski W, Stoll G (1997) Alkyl polyglycosides-technology, properties and applications. VCH, WeinheimGoogle Scholar
  68. 67.
    Platz G, Pölicke J, Thunig C, Hofmann R, Nickel D, von Rybinski W (1995) Phase behavior, lyotropic phases, and flow properties of alkylglycosides in aqueous solution. Langmuir 11: 4250CrossRefGoogle Scholar
  69. 68.
    Mackay RA (1987) Solubilization. In: Schick MJ (ed) Nonionic surfactants; physical chemistry. Marcel Dekker, New York, p 297Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • T. Engels
  • W. von Rybinski

There are no affiliations available

Personalised recommendations