Skip to main content

Untersuchungen zur systemischen Verfügbarkeit von pflanzlichen Wirkstoffen — unter welchen Voraussetzungen sind sie sinnvoll und wünschenswert?

  • Conference paper
Phytopharmaka V

Zusammenfassung

Untersuchungen zur relativen und/oder absoluten Bioverfügbarkeit eines Arzneistoffes sowie Untersuchungen zur Bioäquivalenz sind wichtige Verfahren im Rahmen des Nachweises von Qualität, Wirksamkeit und Unbedenklichkeit von Arzneimitteln. Auch im Rahmen der nationalen Zulassung von pflanzlichen Arzneimitteln können in Deutschland entsprechende Daten gefordert werden; solche Untersuchungen können auch Bestandteil der toxikologischen und pharmakologischen Dokumentation sein. Studien zur absoluten Bioverfügbarkeit werden dabei für Phytopharmaka eher die Ausnahme sein und höchstens im Rahmen der Arzneiform-oder Arzneistoffentwicklung eine Rolle spielen. Untersuchungen zur relativen Bioverfügbarkeit können dagegen nicht nur bei der Entwicklung, sondern auch bei bereits zugelassenen Präparaten sinnvoll sein. Vergleichende Untersuchungen zur pharmazeutischen Äquivalenz (Wirkstofffreisetzung/Dissolution-Test) dienen der Charakterisierung der Arzneiform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Baba S, Furuta T, Fujioka M, Goromaru T (1983) Studies on drug metabolism by use of isotopes XXVII: urinary metabolites of rutin in rats and the role of intestinal microflora in the metabolism of rutin. J Pharm Sci 72: 1155--1158

    Article  PubMed  CAS  Google Scholar 

  2. Baba S, Furuta T, Horie M, Nakagawa H (1981) Studies on drug metabolism by use of isotopes XXVI: Determination of urinary metabolites of rutin in humans. J Pharm Sci 70: 780–782

    Article  PubMed  CAS  Google Scholar 

  3. Biber A, Fischer H, Romer A, Chatterjee SS (1998) Oral bioavailability of hyperforin from hypericum extracts in rats and human volunteers. Pharmacopsychiatry 31 Suppl 1: 36–43

    Article  PubMed  CAS  Google Scholar 

  4. Bokkenheuser VD, Winter J, Cohen BI, O’Rourke S, Mosbach EH (1987) Hydrolysis of dietary flavonoid glycosides by strains of intestinal bacteroides from humans. Biochem J 248: 953–956

    PubMed  CAS  Google Scholar 

  5. Bork PM, Bacher S, Schmitz ML, Kaspers U, Heinrich M (1999) Hypericin as a non-antioxidant inhibitor of NF-kappa B. Planta Med 65: 297–300

    Article  PubMed  CAS  Google Scholar 

  6. Butterweck V, Petereit F, Winterhoff H, Nahrstedt A (1998) Solubilized hypericin and pseudohypericin from Hypericum perforatum exert antidepressant activity in the forced swimming test. Planta Med 64: 291–294

    Article  PubMed  CAS  Google Scholar 

  7. Butterweck V, Wall A, Lieflander-Wulf U, Winterhoff H, Nahrstedt A (1997) Effects of the total extract and fractions of Hypericum perforatum in animal assays for antidepressant activity. Pharmacopsychiatry 30 Suppl 2: 117–124

    Article  PubMed  CAS  Google Scholar 

  8. Chatterjee SS, Bhattacharya SK, Wonnemann M, Singer A, Muller WE (1998) Hyperforin as a possible antidepressant component of hypericum extracts. Life Sci 63: 499–510

    Article  PubMed  CAS  Google Scholar 

  9. Crespy V, Manach C, Morand C, Besson C, Demigne C, Remesy C (1998) Intestinal absorption and metabolism of quercetin. XIXth International Conference on Polyphenols. Lille (France), vol 1, p 75

    Google Scholar 

  10. Day AJ, DuPont MS, Ridley S, Rhodes M, Rhodes MJ, Morgan MR, Williamson G (1998) Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver ß-glucosidase activity. FEBS Lett 436: 71–75

    Article  PubMed  CAS  Google Scholar 

  11. De Smet PA, Brouwers JR (1997) Pharmacokinetic evaluation of herbal remedies. Basic introduction, applicability, current status and regulatory needs. Clin Pharmacokinet 32: 427–436

    Article  PubMed  Google Scholar 

  12. Dimpfel W, Schober F, Mannel M (1998) Effects of a methanolic extract and a hyperforin-enriched CO2 extract of St. John’s Wort (Hypericum perforatum) on intracerebral field potentials in the freely moving rat (Tele-Stereo-EEG). Pharmacopsychiatry 31 Suppl 1: 30–35

    Article  PubMed  CAS  Google Scholar 

  13. Firenzuoli F, Gori L (1999) Is the antidepressant effect of Hypericum extracts depending on their hyperforin content? Forsch Komplementarmed 6: 27

    Article  PubMed  CAS  Google Scholar 

  14. Gee J-M, Dupont MS, Rhodes M-JC, Johnson I-T (1998) Quercetin glucosides interact with the intestinal glucose transport pathway. Free Rad Biol Med 25: 19–25

    Article  PubMed  CAS  Google Scholar 

  15. Gräfe EU, Derendorf H, Veit M (1999) Pharmacokinetics and bioavailability of the flavonol quercetin in humans. Int J Clin Pharmacol Ther 37: 219–233

    Google Scholar 

  16. Gräfe EU, Pforte H, Mueller S, Teltscher K, Andrew B, Riethling AK, Drewelow B, Derendorf H, Jacobasch G, Veit M (1999) Relative bioavailability of the flavonol quercetin and quercetin glycosides in humans. Publication in preparation

    Google Scholar 

  17. Hagels H (1996) Analytische, pharmazeutische, phytochemische sowie inter-und intraindividuelle Untersuchungen zu Fagopyrum-Arten; Studie zur Pharmakokinetik des Rutins. Dissertation. Freie Universität Berlin

    Google Scholar 

  18. Ihme N, Kiesewetter H, Jung F, Hoffmann KH, Birk A, Muller A, Grutzner KI (1996) Leg oedema protection from a buckwheat herb tea in patients with chronic venous insufficiency: a single-centre, randomised, double-blind, placebo-controlled clinical trial. Eur J Clin Pharmacol 50: 443–447

    Article  PubMed  CAS  Google Scholar 

  19. Jankun J (1997) Why drinking green tea could prevent cancer. Nature 387: 561

    Article  PubMed  CAS  Google Scholar 

  20. Kaehler ST, Sinner C, Chatterjee SS, Philippu A (1999) Hyperforin enhances the extracellular concentrations of catecholamines, serotonin and glutamate in the rat locus coeruleus. Neurosci Lett 262: 199–202

    Article  PubMed  CAS  Google Scholar 

  21. Kim DH, Jung EA, Sohng IS, Han JA, Kim TH, Han MJ (1998) Intestinal bacterial metabolism of flavonoids and its relation to some biological activities. Arch Pharm Res 21: 17–23

    Article  PubMed  CAS  Google Scholar 

  22. Manach C, Morand C, Crespy V, Demigne C, Texier O, Regerat F, Remesy C (1998) Quercetin is recovered in human plasma as conjugated derivatives which retain antioxidant properties. FEBS Lett 426: 331–336

    Article  PubMed  CAS  Google Scholar 

  23. Merfort I, Heilmann J, Weiss M, Pietta P, Gardana C (1996) Radical scavenger activity of three flavonoid metabolites studied by inhibition of chemiluminescence in human PMNs. Planta Med 62: 289–292

    Article  PubMed  CAS  Google Scholar 

  24. Middleton E, Kandaswami C (1993) The impact of plant flavonoids on mammalian biology: Implications for immunity, inflammation and cancer. In: Harborne JB (ed) The Flavonoids: Advances in research since 1986. Chapman & Hall, London

    Google Scholar 

  25. Muller WE, Singer A, Wonnemann M, Hafner U, Rolli M, Schafer C (1998) Hyperforin represents the neurotransmitter reuptake inhibiting constituent of hypericum extract. Pharmacopsychiatry 31 Suppl 1: 16–21

    Article  PubMed  CAS  Google Scholar 

  26. Olthof MR, Hollman PC, Katan MB (1998) Absorption and excretion of quercetin glucosides in man. XIXth International Conference on Polyphenols. Lille (France), vol 1, p 69

    Google Scholar 

  27. Piskula MK, Terao J (1998) Quercetin’s solubility affects its accumulation in rat plasma after oral administration. J Agric Food Chem 46: 4313–4317

    Article  CAS  Google Scholar 

  28. Sawai Y, Kohsaka K, Nishiyama Y, Ando K (1987) Serum concentrations of rutoside metabolites after oral administration of a rutoside formulation to humans. Drug Res 37: 729–732

    CAS  Google Scholar 

  29. Scheline RR (1991) CRC Handbook of mammalian metabolism of plant compounds. CRC Press, Boca Raton

    Google Scholar 

  30. Schilcher H, Hagels H (1996) Zur Pharmakokinetik und zum Metabolismus von Flavonoiden. In: Loew D, Rietbrock N (Hrsg) Phytopharmaka II: Forschung und klinische Anwendung. Steinkopff, Darmstadt

    Google Scholar 

  31. Simmen U, Burkard W, Berger K, Schaffner W, Lundstrom K (1999) Extracts and constituents of Hypericum perforatum inhibit the binding of various ligands to recombinant receptors expressed with the Semliki Forest virus system. J Recept Signal Transduct Res 19: 59–74

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gräfe, E.U., Veit, M. (1999). Untersuchungen zur systemischen Verfügbarkeit von pflanzlichen Wirkstoffen — unter welchen Voraussetzungen sind sie sinnvoll und wünschenswert?. In: Loew, D., Blume, H., Dingermann, T. (eds) Phytopharmaka V. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-642-58709-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58709-2_8

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-642-63693-6

  • Online ISBN: 978-3-642-58709-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics