Skip to main content

Sediment Redistribution, 230Thex- Normalization and Implications for the Reconstruction of Particle Flux and Export Paleoproductivity

  • Chapter
Use of Proxies in Paleoceanography

Abstract

The reconstruction of biogenic particle fluxes and export paleoproductivity from accumulation rates of biogenic proxies in late Quaternary marine sediments, besides other factors, greatly depends on the quantification of the amount of laterally redistributed sediment particles. This is particularly crucial in areas of highly dynamic bottom currents such as in the vicinity of the Antarctic Circumpolar Current System of the Southern Ocean but may also be important in environments with lower current speeds. The flux of the natural radionuclide 230Th to the sediments is expected to match its local production rate because of its very low oceanic residence time and high particle reactivity. Some uncertainties possibly affecting this assumed constant flux in areas of highly dynamic water masses and strong spacial contrasts of particle flux intensity have to be considered. Advective 230Th transport and particle size dependent relocation of particles may occur there. Sediment redistribution can therefore in these areas only be evaluated applying a normalization to 230Thex if its fluxes deviate significantly (>50%) from the expected values. It has been shown using this method that up to twelve times the vertical particle flux has been supplied laterally in areas such as the ACC. It is in turn possible to calculate realistic bulk accumulation rates (rain rates) as the basis for reconstructing proxy fluxes from marine sediments. A high variability of sediment redistribution intensity, and thus uncorrected proxy accumulation rates from one location to the other, but also within single cores, demonstrates the necessity of its quantification and correction before any paleoceanographic interpretations applying these accumulation rates may be carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abelmann A, Gersonde R (1991) Biosiliceous particle flux in the Southern Ocean. Mar Chem 35: 503–536

    Article  Google Scholar 

  • Anderson JB (1990) Sediments. In: Glasby GP (ed) Antarctic sector of the Pacific. Oceanogr Ser Vol 51, Elsevier, New York, pp 187–205

    Google Scholar 

  • Anderson RF, Bacon MP, Brewer PG (1983) Removal of 230Th and 231Pa from the open ocean. Earth Planet Sci Lett 62:7–23

    Article  Google Scholar 

  • Asmus T, Frank M, Koschmieder C, Frank N, Gersonde R, Kuhn G, Mangini A (1999) Biogenic particle flux at the southern Atlantic section of the Subantarctic Front during the late Quaternary: Evidence from sedimentary 231Paex and 230Thex. Mar Geol, in pre

    Google Scholar 

  • Bacon MP, Rosholt JN (1982) Accumulation rates of 230Th and 231Pa and some transition metals on the Bermuda Rise. GeochimCosmochim Acta 46:651–666

    Article  Google Scholar 

  • Bacon MP (1984) Glacial to interglacial changes in carbonate and clay sedimentation in the Atlantic estimated from thorium-230 measurements. Isot Geosci 2:97–111

    Google Scholar 

  • Bennekom AJ van, Berger GW, van der Gaast SJ, De Vries RTP (1988) Primary productivity and the silica cycle in the in the southern ocean (Atlantic Sector). PaleogeogrPaleoclimatolPaleoecol 67:19–30

    Article  Google Scholar 

  • Berger WH, Smetacek V, Wefer G (1989) Productivity of the ocean: Present and past. In: Berger WH, Smetacek V and Wefer G (eds) Productivity of the Ocean: Present and Past. Dahlem Workshop Reports, J Wiley & Sons, Chichester, pp 1–34

    Google Scholar 

  • Broecker WS (1982) Glacial to interglacial changes in ocean chemistry. Progr Oceangr 11:151–197

    Article  Google Scholar 

  • Charles CD, Froelich PN, Zibello A, Mortlock RA, Morley JJ (1991) Biogenic opal in Southern Ocean sediments over the last 450,000 years: implications for surface water chemistry and circulation. Paleoceanography 6:697–728

    Article  Google Scholar 

  • Dymond J, Suess E, Lyle M (1992) Barium in deep-sea sediment: A geochemical indicator of paleoproductivity. Paleoceanography 7:163–181

    Article  Google Scholar 

  • Eisenhauer A, Mangini A, Botz R, Walter P, Beer J, Bonani G, Hofinann HJ, Suter M, Wölfli W (1990) High resolution 10Be and 230Th stratigraphy of late Quaternary sediments from the Fram Strait (core 23235). In: Bleil U, Thiede J (eds) Geological history of the polar oceans: Arctic versus Antarctic. Kluwer, Dordrecht Boston London, pp 475–487

    Chapter  Google Scholar 

  • Francois R, Bacon MP, Suman D (1990) Thorium 230 profiling in deep-sea sediments: High resolution records of flux and dissolution of carbonate in the equatorial Atlantic during the last 24,000 years. Paleoceanography 5:761–787

    Article  Google Scholar 

  • Francois R, Bacon MP, Altabet MA, Labeyrie LD (1993) Glacial/interglacial changes in sediment rain rate in the SW Indian sector of Subantarctic waters as recorded by 230Th, 231Pa, U, and δ15N. Paleoceanography 8:611–629

    Article  Google Scholar 

  • Francois R, Bacon MP (1994) Heinrich events in the North Atlantic: radiochemical evidence. Deep-Sea Res.41:315–334

    Article  Google Scholar 

  • Francois R, Altabet MA, Yu E-F, Sigman D, Bacon MP, Frank M, Bohrmann G, Bareille G, Labeyrie L (1997) Dominance of upper water column stratification in the southern ocean’s contribution to low glacial atmospheric CO2. Nature 389:929–935

    Article  Google Scholar 

  • Frank M (1996) Reconstruction of late Quaternary environmental conditions applying the natural radionuclides 230Th, 10Be, 231Pa and 238U: A study of deep-sea sediments from the eastern Atlantic sector of the Antarctic Cireumpolar Current system. Ber Polarforsch Bremerhaven 186, pp 1–136

    Google Scholar 

  • Frank M, Eisenhauer A, Bonn WJ, Walter P, Grobe H, Kubik PW, Dittrich-Hannen B, Mangini A (1995) Sediment redistribution versus paleoproductivity change: Weddell Sea Margin sediment stratigraphy for the last 250,000 years deduced from 230Thex, 10Be and biogenic barium profiles. Earth Planet Sci Lett 136:559–573

    Article  Google Scholar 

  • Frank M, Gersonde R, Rutgers van der Loeff M, Kuhn G, Mangini A (1996) Late Quaternary sediment dating and quantification of lateral sediment redistribution applying 230Thex: A study from the eastern Atlantic sector of the Southern Ocean. Geol Rundsch 85:554–566

    Article  Google Scholar 

  • Gersonde R, Hempel G (1990) Die Expeditionen ANTARKTIS VIII/3 und VIII/4 mit FS“Polarstern” 1989. Ber Polarforsch Bremerhaven 74, pp 1–173

    Google Scholar 

  • Hays JD (1967) Quaternary sediments of the Antarctic Ocean. ProgrOceanogr 4:117–131

    Google Scholar 

  • Heezen BC, Hollister CD (1971) The Face of the Deep. Oxford University Press, New York, pp 657

    Google Scholar 

  • Imbrie J, Hays JD, Martinson DG, Mclntyre A, Mix AC, Morley JJ, Pisias NG, Prell WL, Shackleton NJ (1984) The orbital theory of the Pleistocene climate: Support from a revised chronology of the marine δ18O record. In: Berger AL, Imbrie J, Hays J, Kukla G, Saltzman B (eds) Milankovitch and Climate, Part 1. Reidel, Dordrecht, pp 269–305

    Google Scholar 

  • Jung M, Ilmberger J, Mangini A, Emeis K-C (1997) Why some Mediterranean sapropels survived burn-down (and others did not). Mar Geol 141:51–60

    Article  Google Scholar 

  • Keir R (1988) On the Late Pleistocene ocean geochemistry and circulation. Paleoceangraphy 3: 413–445

    Article  Google Scholar 

  • Kumar N (1994) Trace metals and natural radionuclides as tracers of ocean productivity. PhD thesis, Columbia University, New York, pp 1–317

    Google Scholar 

  • Kumar N, Anderson RF, Mortlock RA, Froehlich PN, Kubik PW, Dittrich-Hannen B, Suter M (1995) Increased biological productivity and export production in the glacial Southern Ocean. Nature 378: 675–680

    Article  Google Scholar 

  • Mangini A, Diester-Haass L (1983) Excess 230Th in N.W. African sediments traces upwelling in the past. In: Suess E, Thiede J (eds) Coastal Upwelling: Its Sediment Record. NATO Conf Ser, Ser IV 10a, pp 455–470

    Google Scholar 

  • Marcantonio F, Kumar N, Stute M, Anderson RF, Seidl MA, Schlosser P, Mix A (1995) A comparative study of accumulation rates derived by He and Th isotope analysis of marine sediments. Earth Planet Sci Lett 133:549–555

    Article  Google Scholar 

  • Marcantonio F, Anderson RF, Stute M, Kumar N, Schlosser P, Mix A (1996) Extraterrestrial 3He as a tracer of marine sediment transport and accumulation. Nature 383:705–707

    Article  Google Scholar 

  • Martinson DG, Pisias NG, Hays JD, Imbrie J, Moore Jr TC, Shackleton NJ (1987) Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300,000 year chronostratigraphy. Quat Res 27:1–29

    Article  Google Scholar 

  • McCave N (1983) Particulate size spectra, behavior and origin of nepheloid layers over the Nova Scotian continental rise. J Geophys Res 88:7647–7666

    Article  Google Scholar 

  • Moran SB, Charette MA, Hoff JA, Edwards RL, Landing WM (1997) Distribution of 230Th in the Labrador Sea and its relation to ventilation. Earth Planet Sci Lett 150:151–160

    Article  Google Scholar 

  • Mortlock RA, Charles CD, Froelich PN, Zibello MA, Saltzman J, Hays JD, Burckle LH (1991) Evidence for lower productivity in the Antarctic Ocean during the last glaciation. Nature 351:220–223

    Article  Google Scholar 

  • Müller PJ, Suess E (1979) Productivity, sedimentation rate and sedimentary organic matter in the oceans-I. Organic carbon preservation. Deep-Sea Res 26A: 1347–1362

    Article  Google Scholar 

  • Nürnberg CC (1995) Bariumfluss und Sedimentation im südlichen Südatlantik: Hinweise auf Produktivitatsänderungen im Quartär. Ber GEOMAR Kiel 38, pp 1–105

    Google Scholar 

  • Nürnberg CC, Bohrmann G, Frank M, Schlüter M (1997) New productivity estimates based on barium flux in the Atlantic sector of the Southern Ocean: results from 190,000 year records. Paleoceanography 12: 594–603

    Article  Google Scholar 

  • Peterson RG, Stramma L (1991) Upper-level circulation in the South Atlantic Ocean. Progr Oceanog 26:1–73

    Article  Google Scholar 

  • Pudsey C (1992) Late Quaternary changes in Antarctic Bottom Water velocity inferred from sediment grain size in the northern Weddell Sea. Mar Geol 107:9–33

    Article  Google Scholar 

  • Rosenthal Y, Lam P, Boyle EA, Thomson J (1995) Authigenic cadmium enrichment in suboxic sediments: Precipitation and postdepositional mobility. Earth Planet Sci Lett 132:99–111

    Article  Google Scholar 

  • Rutgers van der Loeff MM, Berger GW (1991) Scavenging and particle flux: Seasonal and regional variations in the Southern Ocean (Atlantic Sector). Mar Chem 35:553–567

    Article  Google Scholar 

  • Rutgers van der Loeff MM, Berger GW (1993) Scavenging of 230Th and 231Pa near the Antarctic Polar Front in the South Atlantic. Deep-Sea Res 140:339–357

    Google Scholar 

  • Ruhlemann C, Frank M, Hale W, Mangini A, Mulitza S, Müller PJ, Wefer G (1996) Late Quaternary productivity changes in the western equatorial Atlantic: Evidence from 230Th normalized carbonate and organic carbon accumulation rates. Mar Geol 135: 127–152

    Article  Google Scholar 

  • Sarmiento J, Toggweiler R (1984) A new model for the role of the oceans in determining atmospheric pCO2. Nature 308:621–624

    Article  Google Scholar 

  • Scholten JC, Botz R, Paetsch H, Stoffers P (1994) 230Thex flux into Norwegian-Greenland Sea sediments: Evidence for lateral sediment transport during the past 300,000 years. Earth Planet Sci Lett 121:111–124

    Article  Google Scholar 

  • SEA ICE CLIMATIC ATLAS, Vol. 1, Antarctica (1985) Naval Oceanography Command Detachment, Ashville, North Carolina, pp 1-131

    Google Scholar 

  • Suman DO, Bacon MP (1989) Variations in Holocene sedimentation in the North American basin determined by 230Th measurements. Deep-Sea Res 36: 869–878

    Article  Google Scholar 

  • Thomson J, Higgs NC, Wilson TRS, Croudace IW, De Lange GJ, Sandfoort PJM van (1995) Redistribution and geochemical behaviour of redox-sensitive elements around SI, the most recent eastern Mediterranean sapropel. Geochim Cosmochim Acta 59: 3487–3502

    Article  Google Scholar 

  • Vogler S (1997) Untersuchung über die natürlichen Radioisotope Thorium und Protaktinium in der Wassersäule des östlichen Nordatlantik: Einfluss der Ventilation auf die Bilanz von 230Th. PhD thesis, Univ Heidelberg, pp 1–101

    Google Scholar 

  • Walter HJ, Rutgers van der Loeff MM, Hoeltzen H(1997) Enhanced scavenging of 231Pa relative to 230Th in the South Atlantic south of the Polar Front: Implications for the use of the 231Pa/230Th ratio as a paleoproductivity proxy. Earth Planet Sci Lett 149: 85–100

    Article  Google Scholar 

  • Watkins ND, Kennett JP (1972) Regional sedimentary disconformities and upper Cenozoic changes in bottom water velocities between Australiasia and Antarctica. In: Hayes DE (ed) Antarctic oceanology II: The Australian-New Zealand sector. Antarctic Res Ser Vol 19, AGU, Washington, pp 273–294

    Chapter  Google Scholar 

  • Wefer G, Fischer G (1991) Annual primary production and export flux in the Southern Ocean from sediment trap data. Mar Chem 35:597–613

    Article  Google Scholar 

  • Yang YL, Elderfield H, Ivanovich M (1990) Glacial to Holocene changes in the carbonate and clay sedimentation in the equatorial Pacific Ocean estimated from 230Th profiles. Paleoceanography 5:789–809

    Article  Google Scholar 

  • Yu E-F (1994) Variations in the particulate flux of 230Th and 231Pa and paleoceanographic applications of the 231Pa/230Th ratio. phD thesis, WHOI, Wood’s Hole, pp 1–269

    Google Scholar 

  • Yu E-F, Francois R, Bacon MP (1996) Similar rates of modern and last-glacial ocean thermohaline circulation inferred from radiochemical data. Nature 379: 689–694

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Frank, M., Gersonde, R., Mangini, A. (1999). Sediment Redistribution, 230Thex- Normalization and Implications for the Reconstruction of Particle Flux and Export Paleoproductivity. In: Fischer, G., Wefer, G. (eds) Use of Proxies in Paleoceanography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58646-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58646-0_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63681-3

  • Online ISBN: 978-3-642-58646-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics