Skip to main content

Metabolic Modification of Isoimide Type Peroxidizing Compounds Catalyzed by An Isoenzyme of Glutathione S-Transferase

  • Chapter

Abstract

Peroxidizing herbicides cause membrane destruction in plants by inhibiting the membrane-bound protoporphyrinogen oxidase (protox, EC 1.3.3.4) competitively (Nicolaus et al. 1995). This inhibition induces the accumulation of protoporphyrin IX (Lydon and Duke 1988; Matringe and Scalla 1988; Sandmann and Böger 1988; Wittkowski and Hailing 1988) which is sensitized by light with subsequent radical formation leading to degradation of cellular constituents with evolution of ethane (Böger and Sandmann 1990; Böger and Wakabayashi 1995).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Böger P, Sandmann G (1990) Modem herbicides affecting typical plant processes. In: Bowers WS, Ebing W, Martin Dr Wegler R (eds) Chemistry of plant protection, vol. 6 Springer, Heidelberg, New York, Berlin, pp 173–176.

    Google Scholar 

  • Böger P, Sandmann G (1993) Pigment biosynthesis and herbicide interaction. Photosynthetica 28:481–493.

    Google Scholar 

  • Böger P, Wakabayashi K (1995) Peroxidizing herbicides (I), mechanism of action. Z Naturforsch 50c:159–166.

    Google Scholar 

  • Cole DJ (1994) Detoxification and activation of agrochemicals in plants. Pestic Sci 42:209–222.

    Article  CAS  Google Scholar 

  • Dean JV, Gronwald JW, Anderson MP (1991) GST activity in nontreated and CGA-154281-treated corn shoots. Z Naturforsch 46c:850–855.

    Google Scholar 

  • Eastin EF (1971) Fate of fluorodifen in resistant peanut seedlings. Weed Sci 19:261–265.

    CAS  Google Scholar 

  • Evans JDHL, Cavell BD, Hignett RR (1987) Fomesafen — metabolism as a basis for its selectivity in soya. Proc Br Crop Prot Conf Weeds, pp 345-352.

    Google Scholar 

  • Frear DS, Swanson HR, Mansager ER (1983) Acifluorfen metabolism in soybean: diphenyl ether bond cleavage and the formation of homoglutathione, cysteine, and glucose conjugates. Pestic Biochem Physiol 20:299–310.

    Article  CAS  Google Scholar 

  • Fuerst EP, Irzyk GP, Miller KD (1993) Partial characterization of GST isozymes induced by the herbicide safener benoxacor in corn. Plant Physiol 102:795–802.

    PubMed  CAS  Google Scholar 

  • Hagiwara K, Nakayama A (1994) Molecular similarity of peroxidizing herbicides: bioisosterism in Δ2-1,2,4-thiadiazolines and related heterocyclic compounds. J Pestic Sci 19:111–117.

    Article  CAS  Google Scholar 

  • Hagiwara K, Saitoh K, Iihama T, Hosaka H (1993) Synthesis and herbicidal activity of fused Δ2-1,2,4-thiadiazolines. J Pestic Sci 18:309–318.

    Article  CAS  Google Scholar 

  • Hoshi T, Koizumi K, Sato Y, Wakabayashi K (1993) Hydrolysis and phytotoxic activity of N-aryl-3,4,5,6-tetrahydroisophthalimides. Biosci Biotech Biochem 57:1913–1915.

    Article  CAS  Google Scholar 

  • Iida T, Senoo S, Sato Y, Nicolaus B, Wakabayashi K, Böger P (1995) Isomerization and peroxidizing phytotoxicity of thiadiazolidine-thione compounds. Z Naturforsch 50c:186–192.

    Google Scholar 

  • Irzyk GP, Fuerst EP (1993) Purification and characterization of a glutathione S-transferase from benoxacor-treated maize (Zea mays). Plant Physiol 102:803–810.

    Article  PubMed  CAS  Google Scholar 

  • Jablonkai I, Kömives T, Böger P, Sato Y, Wakabayashi K (1997) Chemical catalysis of the isomerization of a peroxidizing herbicidal thiadiazolidine. Proc Br Crop Prot Conf Weeds, pp 771-776.

    Google Scholar 

  • Jacobs JM, Jacobs NJ, Borotz SE, Guerinot ML (1990) Effects of the photobleaching herbicides, acifluorfen-methyl, on protoporphyrinogen oxidation in barley organelles, soybean root mitochondria, soybean root nodules, and bacteria. Arch Biochem Biophys 280:369–375.

    Article  PubMed  CAS  Google Scholar 

  • Jepson I, Lay VJ, Holt DC, Bright SWJ, Greenland AJ (1994) Cloning and characterization of maize herbicide safener-induced cDNAs encoding subunits of glutathione S-transferase isoforms I, II and IV. Plant Mol Biol 26:1855–1866.

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227:680–685.

    Article  PubMed  CAS  Google Scholar 

  • Lambert R, Sandmann G, Böger P (1983) Correlation between structure and phytotoxic activities of nitrodiphenyl ethers. Pestic Biochem Physiol 19:309–320.

    Article  CAS  Google Scholar 

  • Lee HJ, Duke MV, Duke SO (1993) Cellular localization of protoporphyrinogen-oxidizing activities of etiolated barley (Hordeum vulgare L.) leaves. Relationship to mechanism of action of protoporphyrinogen oxidase-inhibiting herbicides. Plant Physiol 102:881–889.

    PubMed  CAS  Google Scholar 

  • Lydon J, Duke SO (1988) Porphyrin synthesis is required for photobleaching activity of the p-nitrosubstituted diphenyl ether herbicides. Pestic Biochem Physiol 31:74–83.

    Article  CAS  Google Scholar 

  • Matringe M, Scalla R (1988) Effects of acifluorfen-methyl on cucumber cotyledons: protoporphyrin accumulation. Pestic Biochem Physiol 32:164–172.

    Article  CAS  Google Scholar 

  • Miller KD, Irzyk GP, Fuerst EP (1994) Benoxacor treatment increases GST activity in suspension cultures of Zea mays. Pestic Biochem Physiol 48:123–134.

    Article  CAS  Google Scholar 

  • Moore RE, Davies MS, O’Connell KM, Harding El, Wiegand RC, Tiemeier DC (1986) Cloning and expression of a cDNA encoding a corn glutathione transferase in E. coli. Nucleic Acids Res 14:7227–7235.

    Article  PubMed  CAS  Google Scholar 

  • Mozer TJ, Tiemeier DC, Jaworski EG (1983) Purification and characterization of corn GST. Biochemistry 22:1068–1072.

    Article  PubMed  CAS  Google Scholar 

  • Nandihalli UB, Duke SO (1993) The porphyrin pathway as a herbicide target side. In: Duke SO, Menn JJ, Plimmer JR (eds) Pest control with enhanced environmental safety ACS Symp Ser 524, Am Chem Soc, Washington, DC, pp 62–78.

    Chapter  Google Scholar 

  • Nandihalli UB, Sherman TD, Duke MV, Fisher JD, Mausco VA, Becerril JM, Duke SO (1992) Correlation of protoporphyrinogen oxidase inhibition by o-phenyl-pyrrolidino and piperidino-carbamates with their herbicidal effects. Pestic Sci 35:227–235.

    Article  CAS  Google Scholar 

  • Nicolaus B, Johansen JN, Böger P (1995) Binding affinities of peroxidizing herbicides to protoporphyrinogen oxidase inhibiting diphenyl ether herbicides. Pestic Biochem Physiol 51:20–29.

    Article  CAS  Google Scholar 

  • Nicolaus B, Sato Y, Wakabayashi K, Böger P (1996a) Isomerization of peroxidizing thiadiazolidine herbicides is catalyzed by glutathione S-transferase. Z Naturforsch 51c:342–354.

    Google Scholar 

  • Nicolaus B, Sato Y, Wakabayashi K, Böger P (1996b) Activation of proherbicides by glutathione S-transferase. Nato advanced research workshop. Regulation of enzymatic systems detoxifying xenobiotics in plants, p 32.

    Google Scholar 

  • O’Connell KM, Breaux EJ, Fraley RT (1988) Different rates of metabolism of two chloracetanilide herbicides in Pioneer 3320 corn. Plant Physiol 86:359–363.

    Article  PubMed  Google Scholar 

  • Retzlaff K, Böger P (1996) An endoplasmic reticulum plant enzyme has protoporphyrinogen IX oxidase activity. Pestic Biochem Physiol 54:105–114.

    Article  CAS  Google Scholar 

  • Sandmann G, Böger P (1988) Accumulation of protoporphyrin IX in the presence of peroxidizing herbicides. Z Naturforsch 43c:699–704.

    Google Scholar 

  • Sato Y, Kojima T, Goto T, Oomikawa R, Watanabe H, Wakabayashi K (1991) Hydrolysis and phytotoxic activity of cyclic imides. Agric Biol Chem 55:2677–2681.

    Article  CAS  Google Scholar 

  • Sato Y, Hoshi T, Nicolaus B, Wakabayashi K, Böger P (1994a) Isomerization and peroxidizing phytotoxicity of thiadiazolidine herbicides. Z Naturforsch 49c:49–65.

    Google Scholar 

  • Sato Y, Hoshi T, Nicolaus B, Wakabayashi K, Böger P (1994b) Intrinsic phytotoxic structures of cyclic imide class of peroxidizing herbicides. Abstract paper, 8th international congress of pesticide chemistry, Washington, DC, p 749.

    Google Scholar 

  • Sato Y, Iida T, Senoo S, Nicolaus B, Wakabayashi K, Böger P (1995) Enzymatic conversion of thiadiazolidine-type peroxidizing herbicides into more active triazolidines. Proc 15th Asian Pacific Weed Sci So Conf 1:193–198.

    Google Scholar 

  • Sato Y, Böger P, Wakabayashi K (1997) The enzymatic activation of peroxidizing cyclicisoimide: anew fonction of glutathione S-transferase and glutathione. J Pestic Sci 22:33–36.

    Article  CAS  Google Scholar 

  • Senoo S, Iida T, Shouda K, Sato Y, Nicolaus B, Böger P, Wakabayashi K (1996) Enzyme-modified phytotoxic structure of thiadiazolidine compounds. Z Naturforsch 51c:518–526.

    Google Scholar 

  • Shah DM, Hironaka CM, Wiegand RC, Harding EI, Krivi GG, Tiemeier DC (1986) Structural analysis of a corn gene coding for GST involved in herbicide detoxification. Plant Mol Biol 6:203–211.

    Article  CAS  Google Scholar 

  • Sherman TD, Becerril JM, Matsumoto H, Duke MV, Jacobs JM, Jacobs NJ, Duke SO (1991) Physiological basis for differential sensitivities of plant species to protoporphyrinogen oxidase inhibiting herbicides. Plant Physiol 97:280–287.

    Article  PubMed  CAS  Google Scholar 

  • Shimizu T, Hashimoto N, Nakayama I, Nakao T, Mizutani H, Unai T, Yamaguchi M, Abe H (1995) A novel isourazole herbicide, fluthiacet-methyl, is a potent inhibitor of protoporphyrinogen oxidase after isomerization by gluthathione S-transferase. Plant Cell Physiol 36:625–632.

    CAS  Google Scholar 

  • Timmerman KP (1989) Molecular characterization of corn GST isozymes involved in herbicide detoxification. Physiol Plant 77:465–471.

    Article  CAS  Google Scholar 

  • Uchida A, Iida T, Sato Y, Böger P, Wakabayashi K (1997) Isomerization of 3,4-dialkyl-1,3,4-thiadiazolidines and 3,4-alkylene-1,3,4-thiadiazolidines by glutathione S-transferase. Z Naturforsch 52c:345–350.

    Google Scholar 

  • Wakabayashi K, Matsuya K, Ohta H, Jikihara T (1979) Structure-activity relationship of cyclic imide herbicides. In: Geissbühler H (ed) Advances in pesticide science, part 2. Pergamon Press, Oxford, pp 256–260.

    Google Scholar 

  • Watanabe H, Ohori Y, Sandmann G, Wakabayashi K, Böger P (1992) Quantitative correlation between short term accumulation of proto IX and peroxidative activity of cyclic imides. Pestic Biochem Physiol 42:99–102.

    Article  CAS  Google Scholar 

  • Wittkowski DA, Hailing BP (1988) Accumulation of photodynamic tetrapyrroles induced by acifluorfen-methyl. Plant Physiol 87:632–637.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sato, Y. (1999). Metabolic Modification of Isoimide Type Peroxidizing Compounds Catalyzed by An Isoenzyme of Glutathione S-Transferase. In: Böger, P., Wakabayashi, K. (eds) Peroxidizing Herbicides. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58633-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58633-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63674-5

  • Online ISBN: 978-3-642-58633-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics