Skip to main content

Metabolism and Degradation of Porphyrin Biosynthesis Inhibitor Herbicides

  • Chapter
Peroxidizing Herbicides

Abstract

The metabolism and degradation of herbicides are key factors determining their weed control activity, crop selectivity, environmental fate and safety to non-target organisms. Numerous compounds which inhibit protoporphyrinogen oxidase (i.e. peroxidizing herbicides) have been commercialized or are under development. These compounds span a wide range of use patterns, environmental fate profiles and toxicological properties which result at least in part from their different susceptibilities to plant, animal and microbial metabolism and/or abiotic degradation. In this chapter, we describe the metabolism and degradation of 19 commercialized or candidate peroxidizing herbicides in a number of plant, animal, microbial, soil, water and light systems. These herbicides fall into two subclasses: (1) p-nitro diphenyl ethers, and (2) heterocyclic-substituted benzenes. Data from published reports have been augmented by unpublished results from regulatory studies, when available. As for many large herbicide classes (and the peroxidizing herbicides are one of the largest), susceptibility to metabolism and abiotic degradation is quite dependent on chemical structure, and generalizations about such properties are difficult. For example, some peroxidizing herbicides are relatively recalcitrant to metabolism in plants and rely on soil sorption/placement for crop selectivity. Others are readily metabolized in certain plants and postemergence crop selectivity often results from metabolic inactivation. Similarly, there is wide variability among these herbicides in susceptibility to soil microbial degradation. However, one generalization is that peroxidizing herbicides are subject to the same metabolic transformations as are other agrichemicals including aryl and aliphatic hydroxylation, hydrolysis, deesterification, nitro reduction, O-dealkylation, and conjugation with glutathione as well as multiple secondary conjugation reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achhireddy NR, Kirkwood RC, Fletcher WW (1984a) The uptake and distribution of MCPA and oxadiazon in excised leaves. J Pestic Sci 9:611–615.

    Article  CAS  Google Scholar 

  • Achhireddy NR, Kirkwood RC, Fletcher WW (1984b) Oxadiazon absorption, translocation and metabolism in rice (Oryza sativa) and barnyardgrass (Echinochloa crus-galli). Weed Sci 32:727–731.

    CAS  Google Scholar 

  • Ahrens WH (ed) (1994) Herbicide handbook. Weed Sci Soc Am, Champaign

    Google Scholar 

  • Adler IL, Jones BM, Wargo JP Jr (1977) Fate of 2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl) benzene (oxyfluorfen) in rats. J Agric Food Chem 25:1339–1341.

    Article  PubMed  CAS  Google Scholar 

  • Amuti K, Trombini A, Giammarrusti L, Sbriscia C, Harder H, Gabard J (1997) Azafenidin: A new low use rate herbicide for weed control in perennial crops, industrial weed control and forestry. Proc Brit Crop Prot Conf 1:59–66.

    Google Scholar 

  • Armbrust KL, Reilly D (1992) Batch equilibrium (adsorption/desorption) study of DPX-R6447 in soil. DuPont report AMR 2483-92.

    Google Scholar 

  • Becker JM (1994) Field dissipation of sulfentrazone. FMC internal report.

    Google Scholar 

  • Bollin E Jr (1996) Metabolism of 14C-DPX-R6447 herbicide in grapefruit. DuPont report AMR 2531-2592.

    Google Scholar 

  • Brisbin JM (1996) Metabolism of 14C-DPX-R6447 herbicide in grapes at an application rate of 2.0 lbs/ac. DuPont Report AMR 3511-95.

    Google Scholar 

  • Chakraborty SK, Chowdhury A, Bhattacharyya A, Ghosh S, Pan S, Waters R, Adityachaudhury N (1995) Microbial degradation of oxadiazon by soil fungus Fusarium solani. J Agric Food Chem 43:2964–2969.

    Article  CAS  Google Scholar 

  • Culligan (1994) Field dissipation of sulfentrazone. FMC internal report.

    Google Scholar 

  • Dayan FE, Keener BR, Weete JD, Hancock HG (1996a) Uptake, translocation and metabolism of carfentrazone in soybean and selected weeds. Broc Southern Weed Sci Soc, pp 151-152.

    Google Scholar 

  • Dayan FE, Weete JD, Hancock HG (1996b) Physiological basis for differential sensitivity to sulfentrazone by sicklepod (Senna obtusifolia) and coffee senna (Cassia occidentalis). Weed Sci 44:12–17.

    CAS  Google Scholar 

  • Dayan FE, Duke SO, Weete JD, Hancock HG (1997a) Selectivity and mode of action of carfentrazone, a novel phenyl triazolinone herbicide. Pest Sci 51:65–73.

    Article  CAS  Google Scholar 

  • Dayan FE, Weete JD, Duke SO, Hancock HG (1997b) Soybean (Glycine max) cultivar differences in response to sulfentrazone. Weed Sci 45:634–641.

    CAS  Google Scholar 

  • Deng Y (1995) Field corn metabolism of carfentrazone ethyl. FMC internal report.

    Google Scholar 

  • Draper WM, Casida JE (1983) Diphenyl ether herbicides: mutagenic metabolites and photoproducts of nitrofen. J Agric Food Chem 31:227–231.

    Article  PubMed  CAS  Google Scholar 

  • Eastin EF (1969) Movement and fate of p-nitrophenyl trifluoro-2-nitro-p tolyl ether-1′14C in peanut seedlings. Plant Physiol 44:1397–1401.

    Article  PubMed  CAS  Google Scholar 

  • Eastin EF (1971a) Movement and fate of fluorodifen-1′-14C in cucumber seedlings. Weed Res 11:63–68.

    Article  CAS  Google Scholar 

  • Eastin EF (1971b) Degradation of fluorodifen-1′-14C by peanut seedling roots. Weed Res 11:120–123.

    Article  CAS  Google Scholar 

  • Eastin EF (1971c) Fate of fluorodifen in resistant peanut seedlings. Weed Sci 19:261–265.

    CAS  Google Scholar 

  • Eastin EF (1972a) Photolysis of fluorodifen. Weed Res 12:75–79.

    Article  CAS  Google Scholar 

  • Eastin EF (1972b) Fate of fluorodifen in susceptible cucumber seedlings. Weed Sci 20:255–260.

    CAS  Google Scholar 

  • EINaggar SF (1992) Soybean metabolism of sulfentrazone. FMC internal report.

    Google Scholar 

  • EINaggar SF (1995) Wheat metabolism of carfentrazone ethyl. FMC internal report.

    Google Scholar 

  • Elmarakby SA (1997) Aerobic aquatic metabolism of carfentrazone ethyl. FMC internal report.

    Google Scholar 

  • Evans JDHL, Cavell BD, Hignett RR (1987) Fomesafen — metabolism as a basis for its selectivity in soya. Proc Br Crop Prot Conf 1:345–352.

    Google Scholar 

  • Fadayomi A, Warren GF (1977) Uptake and translocation of nitrofen and oxyfluorfen. Weed Sci 25:111–114.

    CAS  Google Scholar 

  • Frear DS, Swanson HR (1973) Metabolism of substituted diphenylether herbicides in plants. I. Enzymatic cleavage of fluorodifen in peas (Pisum sativum L.). Pest Biochem Physiol 3:473–482

    Article  CAS  Google Scholar 

  • Frear DS, Swanson HR, Mansager ER (1983) Acifluorfen metabolism in soybean: diphenylether bond cleavage and the formation of homoglutathione, cysteine, and glucose conjugates. Pest Biochem Physiol 20:299–310.

    Article  CAS  Google Scholar 

  • Gennari M, Negre M, Asmbrosoli R, Vincenze AV, Vincenti M, Acquati A (1994) Anaerobic degradation of acifluorfen by different enrichment cultures. J Agric Food Chem 42:1232–1236.

    Article  CAS  Google Scholar 

  • Goodyear A (1995a) Aerobic soil metabolism of carfentrazone ethyl. FMC internal report.

    Google Scholar 

  • Goodyear A (1995b) Anaerobic soil metabolism of carfentrazone ethyl. FMC internal report.

    Google Scholar 

  • Guh JO, Lee EK, Kuk YI, Park RD (1995) Absorption, translocation and metabolism of oxyfluorfen in rice (Oryza sativa) and barnyardgrass (Echinochloa crus-galli). Weed Res Jpn 40:245–251.

    CAS  Google Scholar 

  • Hamada T, Yoshida R, Nagano E, Oshio H, Kamoshita K (1989) S-23121 — a new cereal herbicide for broad-leaved weed control. Proc Brit Crop Prot Conf 1:41–46.

    Google Scholar 

  • Hirata H, Ishizuka K (1975) Identification of the metabolite (M-1) of 2-tert-butyl-4-(2,4-dichloro-5-isopropoxyphenyl)-1,3,4-oxadiazolin-5-one (oxadiazon) in rice plants. Agric Biol Chem 39:1447–1454.

    Article  CAS  Google Scholar 

  • Hunt LM, Chamberlain WF, Gilbert BN, Hopkins DE, Gingrich AR (1977) Absorption, excretion, and metabolism of nitrofen by a sheep. J Agric Food Chem 25:1062–1065.

    Article  PubMed  CAS  Google Scholar 

  • Ishizuka K, Hirata H, Fukunaga K (1975) Absorption, translocation and metabolism of 2-tert-butyl-4-(2,4-dichloro-5-isopropoxyphenyl)-1,3,4-oxadiazolin-5-one (oxadiazon) in rice plants. Agric Biol Chem 39:1431–1446.

    Article  CAS  Google Scholar 

  • Ishizuka K, Matsumoto H, Hyakutake H (1988) Selective inhibitory action of chlomethoxynil on rice and barnyardgrass and its molecular fate in the light and dark. Weed Res Jpn 33:41–48.

    CAS  Google Scholar 

  • Jacobson A (1989) Metabolic fate of Compete herbicide in wheat. Abstr Am Chem Soc 198:AGRO 19.

    Google Scholar 

  • Kabler K, Williamson K (1991) Aqueous hydrolysis of sulfentrazone. FMC internal report.

    Google Scholar 

  • Kale SP, Raghu K (1989) Fate of 14C nitrofen in rice paddy ecosystem. Bull Environ Contam Toxicol 42:544–547.

    Article  PubMed  CAS  Google Scholar 

  • Kale SP, Raghu K (1994) Fate of 14C-nitrofen in soils. Bull Environ Contam Toxicol 53:298–302.

    Article  PubMed  CAS  Google Scholar 

  • Kamoshita K, Nagano E, Saito K, Sakaki M, Yoshida R, Sato R, Oshio H (1992) S-23031, a new postemergence herbicide for soybeans. In Copping LG, Green MB, Rees RT (eds) Pest management in soybean. SCI (Elsevier Applied Science), Amsterdam, pp 317–325.

    Chapter  Google Scholar 

  • Kim EI, McEuen SF (1996) Rate of degradation of 14C-DPX-R6447 on three soils. DuPont report AMR 3190-94.

    Google Scholar 

  • Kuwatsuka (1977) Studies on the fate and behavior of herbicides in soil and plant. J Pestic Sci 2:201–213.

    Article  Google Scholar 

  • Lamoureux GL, Davison KL (1975) Mercapturic acid formation in the metabolism of propachlor, CDAA, and fluorodifen in the rat. Pest Biochem Physiol 5:497–506.

    Article  CAS  Google Scholar 

  • Lamoureux GL, Rusness DG, Schroder P, Rennenberg H (1991) Diphenyl ether herbicide metabolism in a spruce cell suspension culture: the identification of two novel metabolites derived from a glutathione conjugate. Pest Biochem Physiol 39:291–301.

    Article  CAS  Google Scholar 

  • Lamoureux GL, Rusness DG, Schroder P (1993) Metabolism of a diphenylether herbicide to a volatile thioanisole and a polar sulfonic acid metabolite in spruce (Picea). Pest Biochem Physiol 47:8–20.

    Article  CAS  Google Scholar 

  • Leather GR, Foy CL (1977) Metabolism of bifenox in soil and plants. Pest Biochem Physiol 7:437–442.

    Article  CAS  Google Scholar 

  • Lee AH, Lu PY, Metcalf RL, Hsu EL (1976) The environmental fate of three dichlorophenyl nitrophenyl ether herbicides in a rice paddy model ecosystem. J Environ Qual 5:482–486.

    Article  Google Scholar 

  • Lee JJ, Matsumoto H, Pyon JY, Ishizuka K (1991) Mechanism of selectivity of diphenyl ether herbicides oxyfluorfen and chlomethoxynil in several plants. Weed Res Jpn 36:162–170.

    CAS  Google Scholar 

  • Leung LY, Lyga JW, Robinson RA (1991) Metabolism and distribution of the experimental triazole herbicide F6285 [1-[2,4-dichloro-5-[N-(methylsulfonyl)]-1,4-dihydro-3-methyl-4-(difluoromethyl)-5H-triazol-5-one] in the rat, goat, and hen. J Agric Food Chem 39:1509–1514.

    Article  CAS  Google Scholar 

  • Locke RK, Baron RL (1972) Preforan metabolism by tobacco cells in suspension culture. J Agric Food Chem 20:861–867.

    Article  CAS  Google Scholar 

  • Maigrot PH, Perrot A, Hede-Hauy L, Murray A (1989) Fluoroglycofen-ethyl: a new selective herbicide for broad-leaved weeds in cereals. Proc Br Crop Prot Conf 1:47–51.

    Google Scholar 

  • Massey JH, Reilly D (1996) Photodegradation of DPX-R6447 in water by simulated sunlight. Dupont report AMR 2491-92.

    Google Scholar 

  • Matsunaga H, Isobe N, Kaneko H, Nakatsukan, Yamane S (1997a) Metabolism of pentyl 2-chloro-4-fluoro-5-(3,4,5,6-tetrahydrophthalimido) phenoxyacetate (flumiclorac pentyl, S-23031) in rats. 2. Absorption, distribution, biotransformation, and excretion. J Agric Food Chem 45:501–506.

    Article  CAS  Google Scholar 

  • Matsunaga H, Tomigahara Y, Kaneko H, Nakatsuka I, Yamane S (1997b) Identification of a reduced form metabolite of flumiclorac pentyl (S-23031) in rats. J Pestic Sci 22:133–135.

    Article  CAS  Google Scholar 

  • Miyazawa T, Kawano K, Shigematsu S, Yamaguchi M, Matsunari K, Porpiglia P, Gutbrod KG (1993) KIH-9201: a new low-rate post-emergence herbicide for maize (Zea mays) and soybeans (Glycine max). Proc Br Crop Prot Conf 1:23–28.

    Google Scholar 

  • Mizutani H, Unai T, Shimizu T, Ishikawa K, Yusa Y (1994a) Isomerization of a novel herbicide KIH-9201 and its analogs by glutathione and glutathione-s-transferase. Abstr 19th Meeting Jpn Pest Sci Soc, p 128.

    Google Scholar 

  • Mizutani H, Nakahira Y, Unai T, Ishikawa K, Yusa Y, Yamaguchi M (1994b) Metabolism of a novel herbicide KIH-9201 by soybean and onamomi seedlings. Abstr 19th Meeting Jpn Pest Sci Soc, p 129.

    Google Scholar 

  • Mizutani H, Unai T, Nakahira Y, Ishikawa K, Yusa Y (1994c) Metabolism and degradation of a novel herbicide KIH-9201 in rats and soils. Abstr 19th Meeting Jpn Pest Sci Soc, p 149.

    Google Scholar 

  • Naidu MV, Fox GC (1995a) Aerobic soil metabolism of 14C-DPX-R6447. DuPont report AMR 2690-2693.

    Google Scholar 

  • Naidu MV, Fox GC (1995b) Anaerobic soil metabolism of 14C-DPX-R6447. DuPont report AMR 2684-2693.

    Google Scholar 

  • Nakagawa M, Crosby DG (1974) Photodecomposition of nitrofen. J Agric Food Chem 22:849–853.

    Article  PubMed  CAS  Google Scholar 

  • Niki Y, Kuwatsuka S (1976) Degradation of diphenyl ether herbicides in soils. Soil Sci Plant Nutr (Tokyo) 22:223–232.

    Article  CAS  Google Scholar 

  • Ogawa K, Ohori Y, Aizawa H, Shigeoka T, Yamauchi F (1980) Metabolism and degradation of an imide herbicide, MK-129 (1) in plants. Abstr 5th Meeting Jpn Pest Sci Soc, p 131.

    Google Scholar 

  • Oh BY, Jeang YH, Lee BM (1981) Studies on degradation of butachlor and nitrofen in different soil conditions. Hanguk Nonghwa Hakhoe Chi 24:112–119.

    CAS  Google Scholar 

  • Ohori Y, Ogawa K, Aizawa H, Shigeoka T, Yamauchi F (1980) Metabolism and degradation of an imide herbicide, MK-129 (2) in soils. Abstr 5th Meeting Jpn Pest Sci Soc, p 132.

    Google Scholar 

  • Ohyama H, Kuwatsuka S (1978) Degradation of bifenox, a diphenyl ether herbicide, methyl 5-(2,4-dichlorophenoxy)-2-nitrobenzoate, in soils. J Pestic Sci 3:401–410.

    Article  CAS  Google Scholar 

  • Ohyama H, Kuwatsuka S (1983) Behavior of bifenox, a diphenyl ether herbicide, methyl 5-(2,4-dichlorophenoxy)-2-nitrobenzoate, in soil. J Pestic Sci 8:17–25.

    Article  CAS  Google Scholar 

  • Okada M, Aizawa H, Shigeoka T, Yamauchi F (1980) Metabolism and degradation of an imide herbicide, MK-129 (3) in rats. Abstr 5th Meeting Jpn Pest Sci Soc, p 133.

    Google Scholar 

  • Oyamada M, Kuwatsuka S (1988) Effects of soil properties and conditions on the degradation of three diphenyl ether herbicides in flooded soils. J Pestic Sci 13:99–105.

    Article  CAS  Google Scholar 

  • Plowchalk DR (1996) Metabolism of DPX-R6447 in lactating goat. DuPont report AMR 2708-93.

    Google Scholar 

  • Pornprom T, Matsumoto H, Usui K, Ishizuka K (1994) Absorption and metabolism of oxyfluorfen in tolerant soybean cells. Weed Res Jpn 39:180–182.

    CAS  Google Scholar 

  • Purser D (1994) Degradation and retention of carfentrazone ethyl in a water/sediment system. FMC internal report.

    Google Scholar 

  • Pusin A, Gessa C (1991) Photolysis of acifluorfen in aqueous solution. Pest Sci 32:1–5.

    Article  Google Scholar 

  • Qian W, Jin W, Li D, Xu R (1982) Persistence of nitrofen in soil. Huanjing Kexue 3:36–39.

    CAS  Google Scholar 

  • Ramsey AA (1994) Confined crop rotation study of sulfentrazone. FMC internal report.

    Google Scholar 

  • Ramsey AA, Venables JA (1997) Tobacco metabolism of sulfentrazone. FMC internal report.

    Google Scholar 

  • Reilly D, Armbrust KL (1996) Photodegradation of radiolabeled DPX-R6447 on soil conducted in simulated sunlight. DuPont report AMR 2692-2693.

    Google Scholar 

  • Raub MF, Vengurlekar SS, Reiser CA, Panek MG, Veit P, McGown SR, Geiger DS (1996) Metabolism of 14C-sodium acifluorfen in peanut Abstr Am Chem Soc 211(1–2):AGRO 51.

    Google Scholar 

  • Ritter RL, Coble HD (1981) Penetration, translocation and metabolism of acifluorfen in soybean (Glycine max), common ragweed (Ambrosia artemisiifolia) and common cocklebur (Xanthium pensylvanicum). Weed Sci 29:474–480.

    CAS  Google Scholar 

  • Robinson RA (1995) Goat metabolism of carfentrazone ethyl. FMC internal report.

    Google Scholar 

  • Rogers RL (1971) Absorption, translocation and metabolism of p-nitrophenyl trifluoro-2-nitro-p-tolyl ether by soybeans. J Agric Fooc Chem 19:32–35.

    Article  CAS  Google Scholar 

  • Ruzo LO, Lee JK, Zabik MJ (1980) Solution-phase photodecomposition of several substituted diphenyl ether herbicides. J Agric Food Chem 28:1289–1292.

    Article  CAS  Google Scholar 

  • Saito K, Kaneko H, Sato K, Nakatsuka I, Yamada H (1996) Production of acetylated metabolites of pesticides in mammals: characterization of aniline derivatives in vitro. J Pestic Sci 21:333–336.

    Article  CAS  Google Scholar 

  • Sato Y, Boger P, Wakabayashi K (1997) The enzymatic activation of peroxidizing cyclicisoimide: a new function of glutathione S-transferase and glutathione. J Pestic Sci 22:33–36.

    Article  CAS  Google Scholar 

  • Schocken MJ (1994) Soil photolysis of sulfentrazone. FMC internal report.

    Google Scholar 

  • Schocken MJ, Creekmore RW, Theodoridis G, Nystrom GJ, Robinson RA (1989) Microbial transformation of the tetrazolinone herbicides F5231. Appl Environ Microbiol 55:1220–1222.

    PubMed  CAS  Google Scholar 

  • Schroder P, Lamoureux GL, Rusness DG, Rennenberg H (1990) Glutathione-S-transferase activity in spruce needles. Pest Biochem Physiol 37:211–218.

    Article  Google Scholar 

  • Shimabukuro RH, Lamoureux GL, Swanson HR, Walsh WC, Stafford LE, Frear DS (1973) Metabolism of substituted diphenylether herbicides in plants. II. Identification of a new fluorodifen metabolite, S-(2-nitro-4-trifluoromethylphenyl)-glutathione in peanut. Pest Biochem Physiol 3:483–494.

    Article  CAS  Google Scholar 

  • Shimizu T, Hashimoto N, Nakayama I, Nakao T, Mizutani H, Unai T, Yamaguchi M, Abe H (1995) A novel isourazole herbicide, fluthiacet-methyl, is a potent inhibitor of protoporphyrinogen oxidase after isomerization by glutathione-S-transferase. Plant Cell Physiol 36:625–632.

    CAS  Google Scholar 

  • Singer SS, Schocken MJ (1991) Aerobic soil metabolism of sulfentrazone, FMC internal report.

    Google Scholar 

  • Tewfik MS, Hamdi YA (1975) Metabolism of fluorodifen by soil microorganisms. Soil Biol Biochem 7:79–82.

    Article  CAS  Google Scholar 

  • Tomlin C (ed) (1994) The pesticide manual 10th edn. Br Crop Prot Council and The Royal Soc Chem, Surrey UK

    Google Scholar 

  • Tomlin C (ed) (1997) The pesticide manual 11th edn. Br Crop Prot Council and The Royal Soc Chem, Surrey UK

    Google Scholar 

  • Tsuchiya K, Uchida M, Sugioto T (1982) Metabolism of 14-C-chlomethoxynil in rats. J Pestic Sci 7:187–193.

    Article  CAS  Google Scholar 

  • Van Saun WA, Bahr JT, Crosby GA, Fore ZQ, Guscar HL, Harnish WN, Hooten RS, Marquez MS, Parrish DS, Theodoridis G, Tymonko JM, Wilson KR, Wyle MJ (1991) F6285 — a new herbicide for the pre-emergence selective control of broad-leaved and grass weeds in soybeans. Proc Br Crop Prot Conf 1:77–82.

    Google Scholar 

  • Van Saun WA, Bahr JT, Bourdouxhe LJ, Gargantiel FJ, Hotzman FW, Shires SW, Sladen NA, Tutt SF, Wilson KR (1993) F8426 — a new, rapidly acting, low rate herbicide for the postemergence selective control of broad-leaved weeds in cereals. Proc Br Crop Prot Conf 1:19–28.

    Google Scholar 

  • Vanstone DE, Stobbe EH (1978) Root uptake, translocation and metabolism of nitrofluorfen and oxyfluorfen by fababeans (Vicia faba) and green foxtail (Setaria viridis). Weed Sci 26:389–392.

    CAS  Google Scholar 

  • Wargo JP, Honeycutt R, Alder IL (1975) Characterization of bound residues of nitrofen in cereal grains. J Agric Food Chem 23:1095–1097.

    Article  PubMed  CAS  Google Scholar 

  • Wauchope RD, Buttler TM, Hornsby AG, Augustijn-Beckers PWM, Burt JP (1992) The SCS-ARS-CES pesticide properties database for environmental decision-making. Rev Environ Contam Toxicol 123:1.

    Article  PubMed  CAS  Google Scholar 

  • Willut JM (1994) Aqueous photolysis/soil photolysis of carfentrazone ethyl. FMC internal report.

    Google Scholar 

  • Willut JM, McLaughlin TM, Shomo RE, Fang XP, Gravelle WD, Varanyak LA (1997) Formation and decline of major sulfentrazone photoproducts in buffered aqueous solutions by simulated sunlight. Abstr Am Chem Soc AGRO 096.

    Google Scholar 

  • Wu D (1995) Rat metabolism of carfentrazone ethyl. FMC internal report.

    Google Scholar 

  • Yoshino H, Matsunaga Y, Kaneko H, Yoshitake A, Nakatsuka I, Yamada H (1993) Metabolism of N-[4-chloro-2-fluoro-5-[(1-methyl-2-propynyl) oxy]phenyl]-3,4,5,6-tetrahyrophthalimide (S-23121) in rats: I. Identification of a new, sulphonic acid type of conjugate. Xenobiotica 23:609–619.

    Article  PubMed  CAS  Google Scholar 

  • Zietz E (1995) Field soil dissipation of DPX-R6447 herbicide at European sites using an 80% water dispersible granule formulatioin. DuPont report AMR 2922-94.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aizawa, H., Brown, H.M. (1999). Metabolism and Degradation of Porphyrin Biosynthesis Inhibitor Herbicides. In: Böger, P., Wakabayashi, K. (eds) Peroxidizing Herbicides. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58633-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58633-0_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63674-5

  • Online ISBN: 978-3-642-58633-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics