Skip to main content

Strategy for Peroxidizing Herbicide-Resistant Crops

  • Chapter
Peroxidizing Herbicides

Abstract

The widespread and persistent use of herbicides has increased the efficiency of modern crop production, and chemicals are now available for the control of most weeds in most crops. However, it is inevitable that there would be a biological result from dependence on a single control method. One result has been the selection and enrichment of genes which resulted in herbicide resistance in weed populations. A breakthrough in weed science was the finding of resistance to triazine herbicides (Ryan 1970), and the triazine-resistant weed biotypes then provided superb experimental materials for researchers. The dramatic progress in plant molecular biology made possible the isolation of the gene encoding D1 protein which is the target for triazine. Resistance was found to be due to the exchange of one or more amino acid (s) of the D1 protein. These findings led to the use of genetic engineering techniques in order to create herbicide-resistant crops. For example, a gene conferring resistance to glyphosate has been inserted into the genome of a number of crop species where it possesses glyphosate resistance (Dyer 1994). The resulting possible application of glyphosate to crops has received increasing attention and transgenic plants have been developed into commercial products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe T, Bae CH, Takahashi H, Kumata S, Yoshida S (1997) Effective plant-mutation method using heavy-ion beams (II). RIKEN Accerelator Progress Report, vol 31:148.

    Google Scholar 

  • Ayotte R, Harney PN, Souza Machado V (1989) The transfer of triazine resistance from Brassica napus to B. oleracea L. IV. Second and third backcrosses to B. oleracea and recovery of an 18-chromosome, triazine-resistant backross. Euphytica 40:15–19.

    Google Scholar 

  • Barsby TL, Kemble RJ, Yarrow SA (1987) Brassica hybrids and their utility in plant breeding. Plant Mol Biol 140:223–228.

    Google Scholar 

  • Bayley C, Trolinder C, Morgan M, Quisenberry JE, Ow DW (1992) Engineering 2,4-D resistance into cotton. Theor Appl Genet 83:645–649.

    Article  CAS  Google Scholar 

  • Camadro JM, Labbe P (1996) Cloning and characterization of the yeast HEM14 gene coding for protoporphyrinogen oxidase, the molecular target of diphenyl ether-type herbicides. J Biol Chem 271:9120–9128.

    Article  PubMed  CAS  Google Scholar 

  • Caretto S, Giardina MC, Nicolodi C, Mariotti D (1994) Chlorsulfuron resistance in Daucus carota cell lines and plants: Involvement of gene amplification. Theor Appl Genet 88(5):520–524.

    Article  CAS  Google Scholar 

  • Chamovitz D, Pecker I, Hirschberg J (1991) The molecular basis of resistance to the herbicide norflurazon. Plant Mol Biol 16:967–974.

    Article  PubMed  CAS  Google Scholar 

  • Chamovitz D, Sandmann G, Hirschberg J (1993) Molecular and biochemical characterization of herbicide-resistant mutants of cyanobacteria reveals that phytoene desaturation is a rate-limiting step in carotenoid biosynthesis. J Biol Chem 268:17348–17353.

    PubMed  CAS  Google Scholar 

  • Charest PJ, Hattori J, DeMoor J, Iyer VN, Miki BL (1990) In vitro study of transgenic tobacco expressing Arabidopsis wild type and mutant acetohydroxyacid synthase genes. Plant Cell Rep 8:643–646.

    Article  CAS  Google Scholar 

  • Choi KW, Han O, Lee HJ, Yun YC, Moon YH, Kuk YI, Han SU, Guh JO (1998) Generation of resistance to diphenyl ether herbicide oxyfluorfen via expression of Bacillus subtilis protoporphyrinogen oxidase gene in transgenic tobacco plants. Biosci Biotech Biochem 62:558–560.

    Article  CAS  Google Scholar 

  • Coleman JOD, Blake-Kalff MMA, Emyr Davies TG (1997) Detoxification of xenobiotics by plants: chemical modification and vacuolar compartmentation. Trends Plant Sci 2:144–151.

    Article  Google Scholar 

  • Cornai L, Sen LC, Stalker DM (1983) An altered aroA gene product confers resistance to the herbicide glyphosate. Science 221:370–371.

    Article  Google Scholar 

  • Dailey HA, Dailey TA (1996a) Protoporphyrinogen oxidase of Myxococcus xanthus. J Biol Chem 271:8714–8718.

    Article  PubMed  CAS  Google Scholar 

  • Dailey TA, Dailey HA (1996b) Human protoporphyrinogen oxidase: expression, purification, and characterization of the cloned enzyme. Protein Sci 5:98–105.

    Article  PubMed  CAS  Google Scholar 

  • Dailey TA, Dailey HA, Meissner P, Prasad AR (1995) Cloning, sequence, and expression of mouse protoporphyrinogen oxidase. Arch Biochem Biophys 324:379–384.

    Article  PubMed  CAS  Google Scholar 

  • Dailey TA, Meissner P, Dailey HA (1994) Expression of a cloned protoporphyrinogen oxidase. J Biol Chem 269:813–815.

    PubMed  CAS  Google Scholar 

  • Darmency H, Pernes J (1985) Use of wild Setaria italica (L.) Beauv. to improve triazine resistance in cultivated S. italica (L.) by hybridization. Weed Res 25:175–180.

    Article  CAS  Google Scholar 

  • Donn G, Tischer E, Smith JA, Goodman HM (1984) Herbicide-resistant alfalfa cells; an example of gene amplification in plants. J Mol Appl Genet 2:621–635.

    PubMed  CAS  Google Scholar 

  • Duke SO, Becerril JM, Lydon J, Matsumoto H, Sherman TD (1991) Protopophyrinogen oxidase-inhibiting herbicides. Weed Sci 39:465–473.

    CAS  Google Scholar 

  • Duke SO Lee HJ Nandihalli UB Duke MV (1994) Protoporphyrinogen oxidase as the optimal herbicide site in the porphyrin pathway. In: Duke SO Rebeitz CA (eds) Porphyric pesticides. American Chemical Society Washington DC pp 191–205

    Google Scholar 

  • Dyer WE (1994) Resistance to glyphosate. In: Powles SB, Holtum JAM (eds) Herbicide resistance in plants. Lewis Publishers, Boca Raton, pp 229–242.

    Google Scholar 

  • Eastin EF (1971) Fate of fluorodifen in resistant peanut seedlings. Weed Sci 19:261–266.

    CAS  Google Scholar 

  • Frear DS, Swanson HR, Mansager ER (1983) Acifluorfen metabolism in soybean: diphenylether bond cleavage and the formation of homoglutathione, cysteine, and glucose conjugates. Pestic Biochem Physiol 20:299–308.

    Article  CAS  Google Scholar 

  • Gupta AS, Heinen JL, Holaday AS, Burke JJ, Allen RD (1993) Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic copper-zinc Superoxide dismutase. Proc Natl Acad Sci USA 90:1629–1633.

    Article  PubMed  CAS  Google Scholar 

  • Haughn GW, Smith J, Mazur B, Somerville C (1988) Transformation with a mutant Arabidopsis acetolactate synthase gene renders tobacco resistant to sulfonylurea herbicides. Mol Gen Genet 211:266–271.

    Article  CAS  Google Scholar 

  • Holleander-Czytko H, Sommer I, Amrhein N (1992) Glyphosate tolerance of cultured Corydalis sempervirens cells is acquired by an increased rate of transcription of 5-enolpyruvylshikimate-3-phosphate synthase as well as by a reduced turnover of the enzyme. Plant Mol Biol 20:1029–1036.

    Article  Google Scholar 

  • Horikoshi M, Mametsuka K, Hirooka T (1998) Molecular breeding of photobleaching herbicide-resistant plant (II): Molecular basis of photobleaching herbicide resistance in tobacco. Abstracts of the 23rd Annual Meeting of Pesticide Science Society of Japan, Matsue, Japan, p 77.

    Google Scholar 

  • Ichinose K, Che FS, Kimura Y, Matsunobu A, Sato F, Yoshida S (1995) Selection and characterization of protoporphyrinogen oxidase inhibiting herbicide (S23142) resistant photomixotrophic cultured cells of Nicotiana tabaccum. J Plant Physiol 146:693–698.

    Article  CAS  Google Scholar 

  • Jacobs JM, Jacobs NJ, Borotz SE, Guerinot ML (1990) Effects of the photobleaching herbicide, acifluorfen methyl, on protoporphyrinogen oxidation in barley organelles, soybean root mitochondria, soybean root nodules, and bacteria. Arch Biochem Biophys 280:369–375.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs JM, Jacobs NJ, Sherman TD, Duke SO (1994a) Effect of diphenyl ether herbicides on oxidaton of protoporphyrinogen to protoporphyrin in organellar and plasma membrane-enriched fractions of barley. Plant Physiol 97:197–203.

    Article  Google Scholar 

  • Jacobs JM, Wehner JM, Jacobs NJ (1994b) Porphyrin stability in plant supernatant fractions: implications for the action of porphyrinogenic herbicides. Pestic Biochem Physiol 50:23–30.

    Article  CAS  Google Scholar 

  • Jacobs JM, Jacobs NJ, Duke SO (1996) Protoporphyrinogen destruction by plant extracts and correlation with tolerance to protoporphyrinogen oxidase-inhibiting herbicides. Pestic Biochem Physiol 55:77–83.

    Article  PubMed  CAS  Google Scholar 

  • Kawamura S, Kato T, Matsuo M, Katsuda Y, Yasuda M (1996) Species difference in protoporphyrin IX accumulation produced by an N-phenylimide herbicide in embryos between rats and rabbits. Toxicol Appl Pharmacol 141:520–525.

    Article  PubMed  CAS  Google Scholar 

  • Kishore GM, Brundage L, Kolk K, Padgette SR, Rochester D, Huynh QK, della-Cioppa G (1986) Isolation, purification and characterization of a glyphosate tolerant mutant. Fed Proc 45:1506.

    Google Scholar 

  • Lamoureux GL, Rusness DG, Schroeder P, Rennenberg H (1991) Diphenyl ether herbicide metabolism in a spruce cell suspension culture: the identificaton of two novel metabolites derived from a glutathione conjugate. Pestic Biochem Physiol 39:291–301.

    Article  CAS  Google Scholar 

  • Lamoureux GL, Rusness DG, Schroeder P (1993) Metabolism of a diphenylether herbicide to a volatile thianisole and a polar sulfonic acid metabolite in spruce (Picea). Pestic Biochem Physiol 47:8–20.

    Article  CAS  Google Scholar 

  • Lee HJ, Duke SO (1994) Protoporphyrinogen IX-oxidizing activities involved in the mode of action of peroxidizing herbicides. J Agric Food Chem 42:2610–2618.

    Article  CAS  Google Scholar 

  • Lee JJ, Matsumoto H, Pyon JY, Ishizuka K (1991) Mechanism of selectivity of diphenyl ether herbicides oxyfluorfen and chlomethoxynil in several plants. Weed Res (Tokyo) 36:162–170.

    CAS  Google Scholar 

  • Lee JJ, Matsumoto H, Ishizuka K (1992) Light involvement in oxyfluorfen-induced protoporphyrin IX accumulation in several species of intact plants. Pestic Biochem Physiol 44:119–125.

    Article  CAS  Google Scholar 

  • Lermontova I, Kruse E, Mock H-P, Grimm B (1997) Cloning and characterization of a plastidal and a mitochondrial isoform of tobacco protoporphyrinogen IX oxidase. Proc Natl Acad Sci USA 94:8895–8900.

    Article  PubMed  CAS  Google Scholar 

  • Linden H, Lucas MM, de Felipe MR, Sandmann (1993) Immunogold localization of phytoene desaturase in higher plant chloroplasts. Plant Physiol 88:229–236.

    Article  CAS  Google Scholar 

  • Llewellyn D, Last D (1996) Genetic engineering of crops for tolerance to 2,4-D. In: Duke SO (ed) Herbicide-resistant crops, CRC Press, Boca Raton, pp 159–174.

    Google Scholar 

  • Lyon BR, Llewellyn DJ, Huppatz J, Dennis ES, Peacock WJ (1989) Expression of a bacterial gene in transgenic tobacco confers resistance to the herbicide 2,4-dichlorophenoxyacetic acid. Plant Mol Biol 13:533–540.

    Article  PubMed  CAS  Google Scholar 

  • Matringe M, Camadro JM, Labb P, Scalla R (1989a) Protopophyrinogen oxidase as a molecular target for diphenyl ether herbicides. Biochem J 260:231–235.

    PubMed  CAS  Google Scholar 

  • Matringe M, Camadro JM, Labb P, Scalla R (1989b) Protoporphyrinogen oxidase inhibition by three peroxidizing herbicides: oxadiazon, LS82-556 and M & B 39279, FEBS Lett 245:35–38.

    Article  PubMed  CAS  Google Scholar 

  • Mazur BJ, Chui CF, Smith JK (1987) Isolation and characterization of plant genes coding for acetolactate synthase, the target enzyme for two classes of herbicides. Plant Physiol 85:1110–1117.

    Article  PubMed  CAS  Google Scholar 

  • McHughen A (1989) Agrobacterium mediated transfer of chlorsulfuron resistance to commercial flax cultivars. Plant Cell Rep 8:445–449.

    Article  CAS  Google Scholar 

  • McKersie BD, Chen Y, De-Beus M, Bowley SR, Inze D, D’Halluin K, Botterman J (1993) Super-oxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.). Plant Physiol (Rockville) 103:1155–1163.

    Article  CAS  Google Scholar 

  • Mets L, Thiel A (1989) Biochemistry and genetic control of the photosystem II herbicide target site. In: Böger P, Sandmann G (eds) Target sites of herbicide action. CRC Press, Boca Raton, pp 2–24.

    Google Scholar 

  • Misawa N, Nakagawa M, Kobayashi K, Yamano S, Izawa Y, Nakamura K, Harashima K (1990) Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli. J Bacteriol 172:6704–6712.

    PubMed  CAS  Google Scholar 

  • Misawa N, Yamano S, Linden H, de Felipe M.R, Lucas M, Ikenaga H, Sandmann G (1993) Functional expression of the Erwinia uredovora carotenoid biosynthesis gene crtl in transgenic plants showing an increase of β-carotene biosynthesis activity and resistance to the bleaching herbicide norflurazon. Plant J 4:833–840.

    Article  PubMed  CAS  Google Scholar 

  • Mouches C, Pasteur N, Berge J, Hyrien O, Raymond M, Vincent B, Silvestri B, Georghiou G (1986) Amplification of an esterase gene is responsible for insecticide resistance in a California Culex mosquito. Science 233:778–780.

    Article  PubMed  CAS  Google Scholar 

  • Mullineaux PM (1992) Genetically engineered plants for herbicide resistance. In: Gatehouse AMR, Hilder VA, Boulder D (eds) Plant genetic manipulation for crop protection. Biotechnology in Agriculture Series 7:75–107.

    Google Scholar 

  • Nafziger EM, Widholm JM, Steinrücken HC, Killmer JL (1984) Selection and characterization of a carrot cell line tolerant to glyphosate. Plant Physiol 76:571–574.

    Article  PubMed  CAS  Google Scholar 

  • Nandihalli UB, Duke MV, Duke SO (1992) Quantitative structure-activity relationships of protoporphyrinogen oxidase-inhibiting diphenyl ether herbicides. Pestic Biochem Physiol 43:193–211.

    Article  CAS  Google Scholar 

  • Narita S, Tanaka R, Ito T, Okada K, Taketani S, Inokuchi H (1996) Molecular cloning and characterization of a cDNA that encodes protoporphyrinogen oxidase of Arabidopsis thaliana. Gene 182:169–175.

    Article  PubMed  CAS  Google Scholar 

  • Odell JT, Caimi PG, Yadav NS, Mauvais CJ (1990) Comparison of increased expression of wild-type and herbicide-resistant acetolactate synthase genes in transgenic plants, and indication of posttranscriptional limitation on enzyme activity. Plant Physiol 94:1647–1654.

    Article  PubMed  CAS  Google Scholar 

  • O’hare K, Benoist C, Breathnach R (1981) Transformation of mouse fibroblasts to methotrexate resistance by a recombinant plasmid expressing a prokaryotic dihydrofolate reductase. Proc Natl Acad Sci USA 78:1527–1531.

    Article  CAS  Google Scholar 

  • Padgette SR, Re DB, Barry GF, Eichholtz DE, Delannay X, Fuchs RL, Kishore GM, Fraley RT (1996) New weed control opportunities: development of soybeans with a ROUNDUP READYâ„¢ gene. In: Duke SO (ed) Herbicide resistant crops. CRC Press, Boca Raton, pp 54–84.

    Google Scholar 

  • Parker WB, Somers DA, Wyse DL, Keith RA, Burton JD, Gronwald JW, Gengenbach BG (1989) Selection and characteriztion of sethoxydim-tolerant maize tissue cultures. Plant Physiol 92:1220–1225.

    Article  Google Scholar 

  • Pornprom T, Matsumoto H, Usui K, Ishizuka K (1994) Characterization of oxyfluorfen tolerance selected soybean cell line. Pestic Biochem Physiol 50:107–114.

    Article  CAS  Google Scholar 

  • Prasad ARK, Dailey HA (1995) Generation of resistance to the diphenyl ether herbicide acifluorfen by MEL cells. Biochem Biophys Res Commun 215:186–191.

    Article  PubMed  CAS  Google Scholar 

  • Reinbothe S, Nelles A, Parthier B (1991) N-(phosphonomethyl) glycine (glyphosate) tolerance in Euglena gracilis acquired by either overproduced or resistant 5-enolpyruvylshikimate-3-phosphate synthetase. Eur J Biochem 198:365–374.

    Article  PubMed  CAS  Google Scholar 

  • Reinbothe S, Ortel B, Parthier B (1993) Overproduction by gene amplification of the multifunctional arom protein confers glyphosate tolerance to a plastid-free mutant of Euglena gracilis. Mol Gen Gene 239:416–424.

    Article  CAS  Google Scholar 

  • Ryan GF (1970) Resistance of common groundsel to simazine and atrazine. Weed Sci 18:614–616.

    CAS  Google Scholar 

  • Saari LL, Mauvais CJ (1996) Sulfonylurea herbicide-resistant crops. In: Duke SO (ed) Herbicide-resistant crops. CRC Press, Boca Raton, pp 127–142.

    Google Scholar 

  • Sandmann G, Misawa N, Böger P (1996) Step towards genetic engineering of crops resistant against bleaching herbicides. In: Duke SO (ed) Herbicide-resistant crops. Lewis Publishers, Boca Raton, pp 189–200.

    Google Scholar 

  • Sasarman A, Letowski J, Czaika G, Ramirez V, Nead MA, Jacobs J, Morais R (1993) Nucleotide sequence of the hemG gene involved in the protoporphyrinogen oxidase activity of Escherichia coli K12. Can J Microbiol 39:1155–1161.

    Article  PubMed  CAS  Google Scholar 

  • Sato R, Yamamoto M, Shibata H, Oshio H, Harris EH, Gillham NW, Boyton JE (1994) Characterization of a protoporphyrinogen oxidase mutant of Chlamydomonas reinhardtii resistant to protoporphyrinogen oxidase inhibitors. ACS Symp Ser 559:91–104.

    Article  CAS  Google Scholar 

  • Shah D, Horsch R, Klee H, Kishore G, Winter J, Turner N, Hironaka C, Sanders P, Gasser C, Aykent S, Siegel N, Rogers S, Fraley R (1986) Engineering herbicide tolerance in transgenic plants. Science 233:478–481.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt S, Wittich RM, Fortnagel P, Erdmann D, Francke W (1992) Metabolism of 3-methyldiphenyl ether by Sphingomonas sp. SS31. FEMS Microbiol Lett 96:253–258.

    Article  CAS  Google Scholar 

  • Schroeder P, Lamoureux GL, Rusness DG, Rennenberg H (1990) Glutathione S-transferase activity in spruce needles. Pestic Biochem Physiol 37:211–218.

    Article  CAS  Google Scholar 

  • Sherman TD, Becerril JM, Matsumoto H, Duke MV, Jacobs JM, Jacobs NJ, Duke SO (1991) Physiological basis for differential sensitivities of plant species to protoporphyrinogen oxidase-inhibiting herbicides. Plant Physiol 97:280–287.

    Article  PubMed  CAS  Google Scholar 

  • Sherman TD, Vaughn KC, Duke SO (1996) Mechanisms of action and resistance to herbicides. In: Duke SO (ed) Herbicide-resistant crops. Lewis Publishers, Boca Raton, pp 13-36.

    Google Scholar 

  • Sost D, Amrhein N (1990) Substitution of Gly-96 to Ala in the 5-enolpyruvylshikimate-3-phosphate synthase of Klebsiella pneumoniae results in a greatly reduced affinity for the herbicide glyphosate. Arch Biochem Biophys 282:433–436.

    Article  PubMed  CAS  Google Scholar 

  • Stalker DM (1989) Producing herbicide-resistant plants by gene transfer technology. In: Böger P, Sandmann G (eds) Target sites of herbicide action. CRC Press, Boca Raton, pp 147–163.

    Google Scholar 

  • Stark GR, Wahl GM (1984) Gene amplificaton. Annu Rev Biochem 53:447–475.

    Article  PubMed  CAS  Google Scholar 

  • Streber WR, Willmitzer L (1989) Transgenic tobacco expressing a bacterial detoxifying gene are resistant to 2,4-D. Biotechnology 7:811–815.

    Article  CAS  Google Scholar 

  • Tanaka Y, Iwasaki H, Kitamori S (1996) Biodegradation of herbicide chlornitrofen (CNP) and mutagenicity of its degradation products. Water Sci Tech 34:15–20.

    Article  CAS  Google Scholar 

  • Tourneur C, Jouanin L, Vaucheret H (1993) Over-expression of acetolactate synthase resistant to valine in transgenic tobacco. Plant Sci 88:159–168.

    Article  CAS  Google Scholar 

  • Trebst A (1991) The molecular basis of resistance of photosystem II herbicides. In: Caseley JC, Cussans GW, Atkin RK (eds) Herbicide resistance in weeds and crops. Long Ashton Int Symp, Butterworth-Heinemann, Boston, pp 145–164.

    Google Scholar 

  • Von Wettstein D, Chua NH (1987) (eds) Plant molecular biology. Plenum Press, New York.

    Google Scholar 

  • Wang JM, Asami T, Che FS, Murofushi N, Yoshida S (1997) Photobleaching activity of 2-(phenylamino) methylidenecyclohexane-1,3-diones in tobacco (Nicotiana tabaccum) cultured cells. J Agric Food Chem 45:2728–2734.

    Article  CAS  Google Scholar 

  • Wiersma PA, Schmiemann MG, Condie JA, Crosby WL, Maloney MM (1989) Isolation, expression and phylogenetic inheritance of an acetolactate synthase gene from Brassica napus. Mol Gen Genet 219:413–420.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Asami, T., Yoshida, S. (1999). Strategy for Peroxidizing Herbicide-Resistant Crops. In: Böger, P., Wakabayashi, K. (eds) Peroxidizing Herbicides. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58633-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58633-0_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63674-5

  • Online ISBN: 978-3-642-58633-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics