Skip to main content

Antagonizing Peroxidizing Herbicides

  • Chapter
Peroxidizing Herbicides

Abstract

Peroxidizing herbicides such as p-nitrodiphenyl ethers, cyclic imides, oxadiazoles or pyrazole derivatives have a common mode of action, i.e. inhibition of chlorophyll biosynthesis. Binding of these herbicides to their target enzyme, protoporphyrinogen oxidase, results in the rapid accumulation of protoporphyrin IX. This chlorophyll intermediate causes light-induced formation of reactive oxygen species (ROS) by energy transfer to oxygen, resulting in peroxidative destruction of pigments, proteins and nucleic acids as well as disintegration of cellular membrane systems by lipid peroxidation (reviewed by Böger and Sandmann, 1990; Böger and Wakabayashi 1995; Wakabayashi and Böger, this vol.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen RD, Webb RP, Schake SA (1997) Use of transgenic plants to study antioxidant defenses. Free Radic Biol Med 23:473–479.

    Article  PubMed  CAS  Google Scholar 

  • Alscher RG 1989. Biosynthesis and antioxidant function of glutathione in plants. Physiol Plant 77:457–464.

    Article  CAS  Google Scholar 

  • Alscher RG, Donahue JL, Cramer CL (1997) Reactive oxygen species and antioxidants: relationships in green cells. Physiol Plant 100:224–233.

    Article  CAS  Google Scholar 

  • Amsellem Z, Jansen MAK, Driesenaar ARJ, Gressel J (1993) Developmental variability of photooxidative stress tolerance in paraquat-resistant Conyza. Plant Physiol 103:1097–1106.

    PubMed  CAS  Google Scholar 

  • Aono M, Kubo A, Saji H, Natori T, Tanaka K, Kondo N (1991) Resistance to active oxygen toxicity of transgenic Nicotiana tabacum that expresses the gene for glutathione reductase from Escherichia coli. Plant Cell Physiol 32:691–697.

    CAS  Google Scholar 

  • Aono M, Kubo A, Saij H, Tanaka K, Kondo N (1993) Enhanced tolerance to photo-oxidative stress of transgenic Nicotiana tabacum with high chloroplastic glutathione reductase activity. Plant Cell Physiol 34:129–135.

    CAS  Google Scholar 

  • Asada K (1994) Production and action of active oxygen species in photosynthetic tissues. In: Foyer CH, Mullineaux PM (eds) Causes of photooxidative stress and amelioration of defence systems in plants. CRC Press, Boca Raton, pp 77–104.

    Google Scholar 

  • Berglund T (1994) Nicotinamide, a missing link in the early stress response in eukaryotic cells: a hypothesis with special reference to oxidative stress in plants. FEBS Lett 351:145–149.

    Article  PubMed  CAS  Google Scholar 

  • Berhane K, Widersten M, Engstrom A, Kozarich JW, Mannervick B (1994) Detoxification of base propenals and other alpha, beta-unsaturated aldehyde products of radical reactions and lipid peroxidation by human glutathione transferases. Proc Natl Acad Sci USA 91:1480–1484.

    Article  PubMed  CAS  Google Scholar 

  • Böger P, Miller R (1994) Protoporphyrin accumulation induced by peroxidizing herbicides is counteracted by safeners. Z Naturforsch 49c:775–780.

    Google Scholar 

  • Böger P, Sandmann G (1990) Modern herbicides affecting typical plant processes. In: Bowers WS, Ebing, W, Martin D, Wegler S (eds) Chemistry of plant protection, vol 6, Springer, Berlin Heidelberg New York, pp 173–216.

    Google Scholar 

  • Böger P, Wakabayashi K (1995) Peroxidizing herbicides I: mechanism of action. Z Naturforsch 50c:159–166.

    Google Scholar 

  • Bowler C, Chua NH (1994) Emerging themes of plant signal transduction. Plant Cell 6:1529–1541.

    PubMed  CAS  Google Scholar 

  • Chen Z, Ricigliano JW, Klessig DF (1993) Purification and characterization of a soluble salicylic acid-binding protein from tobacco. Proc Natl Acad Sci, USA 90:9533–9537.

    Article  PubMed  CAS  Google Scholar 

  • Cole DJ (1994) Detoxification and activation of agrochemicals in plants. Pestic Sci 42:209–222.

    Article  CAS  Google Scholar 

  • Dangl JL, Dietrich RA, Richberg MH (1996) Death don’t have no mercy: cell death programs in plant — microbe interactions. Plant Cell 8:1793–1807.

    PubMed  CAS  Google Scholar 

  • Dean JV, Gronwald JW, Eberlein CV (1990) Induction of glutathione S-transferase isoenzymes in Sorghum by herbicide antidotes. Plant Physiol 92:467–473.

    Article  PubMed  CAS  Google Scholar 

  • Dempsey DA, Klessig DF (1994) Salicylic acid, active oxygen species and systemic acquired resistance in plants. Trends Cell Biol 4:334–338.

    Article  PubMed  CAS  Google Scholar 

  • Devlin RM, Zbiec II (1993) Effect of four safeners against the herbicidal activity of V-53482 in corn (Zea mays). Plant Growth Regul Soc Am Q 21(4):190–197.

    CAS  Google Scholar 

  • Drotar A, Phelbs P, Fall R (1985) Evidence for glutathione peroxidase activities in cultured plant cells. Plant Sci 42:35–40.

    Article  CAS  Google Scholar 

  • Durner J, Klessig DF (1996) Salicylic acid is a modulator of tobacco and mammalian catalases. J Biol Chem 271:28492–28501.

    Article  PubMed  CAS  Google Scholar 

  • Edwards R (1996) Characterisation of glutathione transferases and glutathione peroxidases in pea (Pisum sativum). Physiol Plant 98:594–604.

    Article  CAS  Google Scholar 

  • Elstner EF (1990) Der Sauerstoff: Biochemie, Biologie, Medizin. BI-Wissenschaftsverlag, Mannheim.

    Google Scholar 

  • Enyedi AJ, Yalpani N, Silverman P, Raskin I (1992) Signal molecules in systemic plant resistance to pathogens and pests. Cell 70:879–886.

    Article  PubMed  CAS  Google Scholar 

  • Escoubas JM, Lomas M, LaRoche J, Falkowsky PG (1995) Light intensity regulation of cab gene transcription is signaled by the redox state of the plastoquinone pool. Proc Natl Acad Sci USA 92:10237–10241.

    Article  PubMed  CAS  Google Scholar 

  • Eshdat Y, Holland D, Faltin Z, Ben-Hayim G (1997) Plant glutathione peroxidases. Physiol Plant 100:234–240.

    Article  CAS  Google Scholar 

  • Farago S, Brunold C (1990) Regulation of assimilatory sulfate reduction by herbicide antidotes. Plant Physiol 94:1808–1812.

    Article  PubMed  CAS  Google Scholar 

  • Farago S, Brunold G, Kreuz K (1994) Herbicide safeners and glutathione metabolism. Plant Physiol 91:537–542.

    Article  CAS  Google Scholar 

  • Finckh BF, Kunert KJ (1985) Vitamins C and E: an antioxidative system against herbicideinduced lipid peroxidation in higher plants. J Agric Food Chem 33:574–577.

    Article  CAS  Google Scholar 

  • Fodor J, Gullner G, Adam AL, Barna B, Kömives T, Kiraly Z (1997) Local and systemic responses of antioxidants to tobacco mosaic virus infection and to salicylic acid in tobacco: role in systemic acquired resistance. Plant Physiol 114:1443–1451.

    PubMed  CAS  Google Scholar 

  • Foyer C, Lelandais M, Galap C, Kunert KJ (1991) Effects of elevated cytosolic glutathione reductase activity on the cellular glutathione pool and photosynthesis in leaves under normal and stress conditions. Plant Physiol 97:863–872.

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbate metabolism. Planta 133:21–25.

    Article  Google Scholar 

  • Foyer CH, Mullineaux PM (1994) Causes of photooxidative stress and amelioration of defence systems in plants. CRC Press, Boca Raton.

    Google Scholar 

  • Frear DS, Swanson HR (1973) Metabolism of substituted diphenylether herbicides in plants. I Enzymatic cleavage of fluorodifen in peas (Pisum sativum L.). Pestic Biochem Physiol 3:473–482.

    Article  CAS  Google Scholar 

  • Frear DS, Swanson HR, Mansager ER (1983) Acifluorfen metabolism in soybean: diphenylether bond cleavage and the formation of homoglutathione, cysteine, and glucose conjugates. Pestic Biochem Physiol 20:299–310.

    Article  CAS  Google Scholar 

  • Friedrich L, Lawton K, Ruess W, Masner P, Specker N, Gut Relia M, Meier B, Dincher S, Staub T, Uknes S, Métraux JP, Kessmann H, Ryals J (1996) A benzothiadiazole derivative induces systemic acquired resistance in tobacco. Plant J 10:61–70.

    Article  CAS  Google Scholar 

  • Gaillard C, Dufaud A, Tommasini R, Kreuz K, Amrhein N, Martinoia E (1994) A herbicide antidote (safener) induces the activity of both the herbicide detoxifying enzyme and of a vacuolar transporter for the detoxified herbicide. FEBS Lett 352:219–221.

    Article  PubMed  CAS  Google Scholar 

  • Guan L, Scandalios JG (1995) Developmentally related responses of maize catalase genes to salicylic acid. Proc Natl Acad Sci USA 92:5930–5934.

    Article  PubMed  CAS  Google Scholar 

  • Gullner G, Kiraly L, Kömives T (1991a) Nitrodiphenyl ether and phenylimide resistance of a tobacco biotype is due to enhanced inducibility of its antioxidant systems. In: Brighton Crop Protection Conference, Weeds, pp 1111-1118.

    Google Scholar 

  • Gullner G, Kömives T, Király L (1991b) Enhanced inducibility of antioxidant systems in a Nicotiana tabacum L. biotype results in acifluorfen resistance. Z Naturforsch 46c:875–881.

    Google Scholar 

  • Halliwell B, Foyer CH (1978) Properties and physiological function of a glutathione reductase purified from spinach leaves by affinity chromatography. Planta 139:9–17.

    Article  CAS  Google Scholar 

  • Hammond-Kosack KE, Jones JDG (1996) Resistance gene-dependent plant defense responses. Plant Cell 8:1773–1791.

    PubMed  CAS  Google Scholar 

  • Hatzios KK (1997) Regulation of enzymatic systems detoxifying xenobiotics in plants: a brief overview and directions for future research. In: Hatzios KK (ed) Regulation of enzymatic systems detoxifying xenobiotics in plants. Kluwer, Dordrecht, pp 1–5 (NATO ASI series, vol 37).

    Chapter  Google Scholar 

  • Hérouart D, Bowler C, Willekens H, Van Camp W, Slooten L, Van Montagu M, Inzé D (1993a) Genetic engineering of oxidative stress resistance in higher plants. Philos Trans R Soc Lond B 342:235–240.

    Article  Google Scholar 

  • Hérouart D, Van Montagu M, Inzé D (1993b) Redox-activated expression of the cytosolic copper/ zinc Superoxide dismutase gene in Nicotiana. Proc Natl Acad Sci USA 90:3108–3112.

    Article  PubMed  Google Scholar 

  • Hérouart D, Van Montagu M, Inzé D (1994) Developmental and environmental regulation of the Nicotiana plumbaginifolia cytosolic Cu/Zn-superoxide dismutase promoter in transgenic tobacco. Plant Physiol 104:873–880.

    Article  PubMed  Google Scholar 

  • Hossain MA, Asada K (1984) Purification of dehydroascorbate reductase from spinach and its characterization as a thiol enzyme. Plant Cell Physiol 25:85–92.

    CAS  Google Scholar 

  • Hossain MA, Nakano Y, Asada K (1984) Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol 25:385–395.

    CAS  Google Scholar 

  • Inzé D, Van Montagu M (1995) Oxidative stress in plants. Curr Opin Biotechnol 6:153–158.

    Article  Google Scholar 

  • Jacobs JM, Jacobs NJ, Duke SO (1996) Protoporphyrinogen destruction by plant extracts and correlation with tolerance to protoporphyrinogen oxidase-inhibiting herbicides. Pestic Biochem Physiol 55:77–83.

    Article  PubMed  CAS  Google Scholar 

  • Jiménez A, Hernández JA, del Río LA, Sevilla F (1997) Evidence for the presence of the ascorbate — glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114:275–284.

    PubMed  Google Scholar 

  • Knörzer OC (1997) Oxidativer Stress in Pflanzen: Charakterisierung des antioxidativen Systems in Zellkulturen der Sojabohne (Glycine max). PhD thesis, University of Konstanz.

    Google Scholar 

  • Knörzer OC, Durner J, Böger P (1996) Alterations in the antioxidative system of suspension-cultured soybean cells (Glycine max) induced by oxidative stress. Physiol Plant 97:338–396.

    Article  Google Scholar 

  • Knörzer OC, Lederer B, Durner J, Böger P (1998) Salicylic acid activates the antioxidative defense in suspension-cultured soybean cells. Physiol Plant (submitted).

    Google Scholar 

  • Kömives T, Gullner G, Kiraly Z (1997) The ascorbate — glutathione cycle and oxidative stresses in plants In: Hatzios KK (ed) Regulation of enzymatic systems detoxifying xenobiotics in plants. Kluwer, Dordrecht, pp 85–96 (NATO ASI series, vol 37).

    Chapter  Google Scholar 

  • Kreuz K, Tommasini R, Martinoia E (1996) Old enzymes for a new job. Plant Physiol 111:349–353.

    PubMed  CAS  Google Scholar 

  • Kunert KJ, Foyer C (1993) Thiol/disulfide exchange in plants. In: De Kok LJ (ed) Sulfur nutrition and assimilation in higher plants. SPB Academic, The Hague, pp 139–151.

    Google Scholar 

  • Lamoureux GL, Rusness DG (1986) Tridiphane[2-(3,5-dichlorophenyl)-2-(2,2,2-trichlorethyl) oxirane], an antrazine synergist: enzymatic conversion to a potent glutathione S-transferase inhibitor. Pestic Biochem Physiol 26:323–342.

    Article  CAS  Google Scholar 

  • Lamoureux GL, Rusness DG, Schröder P, Rennenberg H (1991) Diphenylether herbicide metabolism in a spruce cell suspension culture: the identification of two novel metabolites derived from a glutathione conjugate. Pestic Biochem Physiol 39:291–301.

    Article  CAS  Google Scholar 

  • Lawton KA, Friedrich L, Hunt M, Weymann X, Delaney T, Kessmann H, Staub T, Ryals J (1996) Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant J 10:71–82.

    Article  PubMed  CAS  Google Scholar 

  • Lay MM, Hubbell JP, Casida JE (1975) Dichloroacetamide antidotes for thiocarbamate herbicides: mode of action. Science 189:287–289.

    Article  PubMed  CAS  Google Scholar 

  • León J, Lawton MA, Raskin I (1995) Hydrogen peroxide stimulates salicylic acid biosynthesis in tobacco. Plant Physiol 108:1673–1678.

    PubMed  Google Scholar 

  • Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583–593.

    Article  PubMed  CAS  Google Scholar 

  • Luwe MWF, Takahama U, Heber U (1993) Role of ascorbate in detoxifying ozone in the apoplast of spinach (Spinacia oleracea L.) leaves. Plant Physiol 101:969–976.

    PubMed  CAS  Google Scholar 

  • Martinoia E, Grill E, Tommasini R, Kreuz K, Amrhein N (1993) ATP-dependent glutathione S-conjugate export pump in the vacuolar membrane of plants. Nature 364:237–249.

    Article  Google Scholar 

  • Marrs KA (1996) The functions and regulation of glutathione S-transferases in plants. Annu Rev Plant Physiol Plant Mol Biol 47:127–158.

    Article  PubMed  CAS  Google Scholar 

  • Matsunaka S, Wakabayashi K (1989) Crop safening against herbicides in Japan. In: Hatzios KK, Hoagland RE (ed) Crop safeners for herbicides, Academic Press, San Diego, pp 47–62.

    Google Scholar 

  • Mauch F, Dudler R (1993) Differential induction of distinct glutathione S-transferases of wheat by xenobiotics and by pathogen attack. Plant Physiol 102:1193–1201.

    Article  PubMed  CAS  Google Scholar 

  • Mehdy MC (1994) Active oxygen species in plant defence against pathogens. Plant Physiol 106:467–472.

    Google Scholar 

  • Mehlhorn M, Seufert G, Schmidt A, Kunert KJ (1986) Effect of SO2 and O3 on production of antioxidants in conifers. Plant Physiol 82:336–338.

    Article  PubMed  CAS  Google Scholar 

  • Miller KD, Irzyk GP, Fuerst EP (1994) Benoxacor treatment increases glutathione S-transferase activity in suspension cultures of Zea mays. Pestic Biochem Physiol 48:123–134.

    Article  CAS  Google Scholar 

  • Mishra NP, Fatma T, Singhal GS (1995) Development of antioxidative defense system of wheat seedlings in response to high light. Physiol. Plant 95:77–82.

    Article  CAS  Google Scholar 

  • Mock H-P, Keetmann U, Kruse E, Rank B, Grimm B (1998) Defense responses to tetrapyrrole-induced oxidative stress in transgenic plants with reduced uroporphyrinogen decarboxylase or coproporphyrinogen oxidase activity. Plant Physiol 116:107–116.

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1980) Spinach chloroplasts scavenge hydrogen peroxide on illumination. Plant Cell Physiol 21:1295–1307.

    CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880.

    CAS  Google Scholar 

  • Nemat Alla MM (1995) Glutathione regulation of glutathione-S-transferase and peroxidase activity in herbicide-treated Zea mays. Plant Physiol Biochem 33:185–192.

    CAS  Google Scholar 

  • Neuefeind T, Reinemer P, Bieseler B (1997) Plant glutathione S-transferase and herbicide detoxification. J Biol Chem 378:199–205.

    CAS  Google Scholar 

  • Neuenschwander U, Vernooij B, Friedrich L, Uknes S, Kessmann, H, Ryals J (1995) Is hydrogen peroxide a second messenger of salicylic acid in systemic acquired resistance? Plant J 8:27–233.

    Article  Google Scholar 

  • Ohki A, Ohki S, Koizumi K, Sato Y, Kohno H, Böger P, Wakabayashi K (1997) Phytotoxicity caused by peroxidizing herbicides is alleviated by 2-substituted-4,6-bis (ethylamino)-1,3,5-triazines. J Pestic Sci Japan 22:309–313.

    Article  CAS  Google Scholar 

  • Pitcher LH, Brennan A, Hurley P, Dunsmuir M, Tepperman J, Zilinskas BA (1991) Overproduction of Petunia chloroplastic copper/zinc Superoxide dismutase does not confer ozone tolerance in transgenic tobacco. Plant Physiol 97:452–455.

    Article  PubMed  CAS  Google Scholar 

  • Pitcher LH, Repetti P, Zilinskas BA (1994) Overproduction of ascorbate peroxidase protects transgenic tobacco against oxidative stress, abstract no 623, Plant Physiol 105:116.

    Google Scholar 

  • Polle A (1996) Mehler reaction: friend or foe in photosynthesis? Bot Acta 109:84–89.

    CAS  Google Scholar 

  • Prasad TK, Anderson MD, Martin BA, Stewart CR (1994) Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell 6:65–74.

    PubMed  CAS  Google Scholar 

  • Rao MV, Paliyath G, Ormrod DP, Murr DP, Watkins CB (1997) Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzymes. Plant Physiol 115:137–149.

    Article  PubMed  CAS  Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8:1809–1819.

    PubMed  CAS  Google Scholar 

  • Sandmann G, Böger P (1990) Peroxidizing herbicides: some aspects of tolerance. In: Green MB, LeBaron HM, Moberg WK, (eds) Managing resistance to agrochemicals. Am Chem Soc, Washington DC, pp 407 (ACS symposium series 421).

    Chapter  Google Scholar 

  • Scandalios JG (1994) Regulation and properties of plant catalases. In: Foyer CH, Mullineaux (eds) Causes of photooxidative stress and amelioration of defence systems in plants. CRC Press, Boca Raton, pp 275–314.

    Google Scholar 

  • Schmidt A, Kunert KJ (1986) Lipid peroxidation in higher plants. The role of glutathione reductase. Plant Physiol 82:700–702.

    Article  PubMed  CAS  Google Scholar 

  • Sen Gupta A, Heinen JL, Holaday AS, Burke J, Allen RD (1993) Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn Superoxide dismutase. Proc Natl Acad Sci USA 90:1629–1633.

    Article  CAS  Google Scholar 

  • Sharma YK, León J, Raskin I, Davis KR (1996) Ozone-induced responses in Arabidopsis thaliana: the role of salicylic acid in the accumulation of defense-related transcripts and induced sesistance. Proc Natl Acad Sci USA 93:5099–5104.

    Article  PubMed  CAS  Google Scholar 

  • Sies H (1993) Strategies of antioxidant defense. Eur J Biochem 215:213–219.

    Article  PubMed  CAS  Google Scholar 

  • Stephenson GR, Yaacoby T (1991) Milestones in the development of herbicide safeners. Z Naturforsch 46c:794–797.

    Google Scholar 

  • Streb P, Feierabend J (1996) Oxidative stress responses accompanying photoinactivation of catalase in NaCl-treated rye leaves. Bot Acta 109:125–132.

    CAS  Google Scholar 

  • Summermatter K, Sticher L, Métreaux JP (1995) Systemic responses in Arabidopsis thaliana infected and challenged with Pseudomonas syringae pv syringae. Plant Physiol 108:1379–1385.

    PubMed  CAS  Google Scholar 

  • Takeuchi Y, Kubo H, Kasahara H, Sakaki T (1996) Adaptive alterations in the activities of scavengers of active oxygen in cucumber cotyledons irradiated with UV-B. J Plant Physiol 147:589–592.

    Article  CAS  Google Scholar 

  • Tepperman JM, Dunsmuir P (1990) Transformed plants with elevated levels of chloroplastic SOD are not more resistant to Superoxide toxicity. Plant Mol Biol 14:501–511.

    Article  PubMed  CAS  Google Scholar 

  • Ulmasov T, Ohmiya A, Hagen G, Guilfoyle T (1995) The soybean GH2/4 gene that encodes a glutathione S-transferase has a promoter that is activated by a wide range of chemical agents. Plant Physiol 108:919–927.

    Article  PubMed  CAS  Google Scholar 

  • Webb RP, Allen RD (1995) Overexpression of pea cytosolic ascorbate peroxidase in Nicotiana tabacum confers protection against the effects of paraquat. Plant Physiol [Suppl] 108:64.

    Article  Google Scholar 

  • Webb RP, Allen RD (1996) Overexpression of pea cytosolic ascorbate peroxidase confers protection against oxidative stress in transgenic Nicotiana tabacum. Plant Physiol [Suppl] 111:48.

    Article  Google Scholar 

  • Winkler BS, Orselli SM, Rex TS (1994) The redox couple between glutathione and ascorbic acid: a chemical and physiological perspective. Free Radic Biol Med 17:333–349.

    Article  PubMed  CAS  Google Scholar 

  • Ye B, Gressel J (1994) Constitutive variation of ascorbate peroxidase activity during development parallels that of Superoxide dismutase and glutathione reductase in paraquat-resistant Conyza. Plant Sci 102:147–151.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Knörzer, O.C., Böger, P. (1999). Antagonizing Peroxidizing Herbicides. In: Böger, P., Wakabayashi, K. (eds) Peroxidizing Herbicides. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58633-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58633-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63674-5

  • Online ISBN: 978-3-642-58633-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics