Skip to main content

Structure-Activity Relationships

  • Chapter
Estrogens and Antiestrogens I

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 135 / 1))

Abstract

Estrogens and antiestrogens are understood to exert their hormonal action after binding to the estrogen receptor (ER), a member of the nuclear receptor superfamily. Until recently, the knowledge of the shape of the full-length ER and the structure of the hormone-binding domain has been rather vague, due to the lack of cristallographie data. Information on the binding mode has been obtained from the three-dimensional structure of various ligands (WWiese and Brooks 1994). In October 1997, Brzozowski et al. (1997) published the crystal structures of the ligand-binding domain of the human ER (residues Ser 301 to Thr 553) in complex with the endogenous ligand 17β-estradiol and raloxifene as representative for a non-steroidal antagonist. Agonist and antagonist bind at the same site within the core of the ligand-binding domain, but demonstrate different binding modes, which induce distinct conformations in the transactivating domain 2. These structural data provide an ideal basis for the elucidation of the mode of action of antiestrogens and the rational design of new ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ali H, Rousseau J, Ghaffari MA, Van Lier JE (1991) Synthesis, receptor binding, and tissue distribution of 7α-and 11β-substituted (17α,20E)-and (17α,20Z)-21-[125I]iodo-19 norpregna-1,3,5(10),20-tetraene-3,17-diols. J Med Chem 34:854–860.

    Article  PubMed  CAS  Google Scholar 

  • Anstead GM, Wilson SR, Katzenellenbogen JA (1989) 2-Arylindenes and 2-arylinde-nones: Molecular structures and considerations in the binding orientation of unsymmetrical nonsteroidal ligands to the estrogen receptor. J Med Chem 32:2163–2171.

    Article  PubMed  CAS  Google Scholar 

  • Anstead GM, Carlson KE, Katzenellenbogen JA (1997) The estradiol pharmacophore: ligand structure-estrogen receptor binding affinity relationships and a model for the receptor binding site. Steroids 62:268–303.

    Article  PubMed  CAS  Google Scholar 

  • Auger S, Merand Y, Pelletier JD, Poirier D, Labrie F (1995) Synthesis and biological activities of thioether derivatives related to the antiestrogens tamoxifen and ICI 164384. J Steroid Biochem Mol Biol 52:547–565.

    Article  PubMed  CAS  Google Scholar 

  • Beato M (1989) Gene regulation by steroid hormones. Cell 56:335–344.

    Article  PubMed  CAS  Google Scholar 

  • Biberger C, von Angerer E (1996) 2-Phenylindoles with sulfur containing side chains. Estrogen receptor affinity, antiestrogenic potency, and antitumor activity. J Steroid Biochem Molec Biol 58:31–43.

    Article  PubMed  CAS  Google Scholar 

  • Bindal RD, Carlson KE, Reiner GCA, Katzenellenbogen JA (1987) 11β-Chloromethyl-[3H] estradiol-17β: A very high-affinity, reversible ligand for the estrogen receptor. J Steroid Biochem 28:361–370.

    Article  PubMed  CAS  Google Scholar 

  • Black LJ, Goode RL (1980) Uterine bioassay of tamoxifen, trioxifene and a new estrogen antagonist (LY 117018) in rats and mice. Life Sci 26:1453–1458.

    Article  PubMed  CAS  Google Scholar 

  • Black LJ, Sato M, Rowley ER, Magee DE, Bekele A, Williams DC, Cullinan GJ, Bendele R, Kauffman RF, Bensch WR, Frolik CA, Termine JD, Bryant HU (1994) Raloxifene (LY139481 HCl) prevents bone loss and reduces serum cholesterol without causing uterine hypertrophy in ovariectomized rats. J Clin Invest 93:63–69.

    Article  PubMed  CAS  Google Scholar 

  • Bowler J, Lilley TJ, Pittam JD, Wakeling AE (1989) Novel steroidal pure antiestrogens. Steroids 54:71–99.

    Article  PubMed  CAS  Google Scholar 

  • Brooks SC, Wappler NL, Corombos JD, et al. (1987) Estrogen structure-receptor function relationships. In: Moudgil VK (ed) Recent Advances in Steroid Hormone Action. Moudgil VK., Berlin-New York, pp 443–466.

    Google Scholar 

  • Brzozowski AM, Pike AC, Dauter Z, Hubbard RE, Bonn T, Engstrom O, Ohman L, Greene GL, Gustafsson JA, Carlquist M (1997) Molecular basis of agonism and antagonism in the estrogen receptor. Nature 389:753–758.

    Article  PubMed  CAS  Google Scholar 

  • Claussner A, Nédélec L, Nique F, Philibert D, Teutsch G, Van de Velde P (1992) 11β-Amidoalkyl estradiols, a new series of pure antiestrogens. J Steroid Biochem Molec Biol 41:609–614.

    Article  PubMed  CAS  Google Scholar 

  • Connor K, Ramamoorthy K, Moore M, Mustain M, Chen I, Safe S, Zacharewski T, Gillesby B, Joyeux A, Balaguer P (1997) Hydroxylated polychlorinated biphenyls (PCBs) as estrogens and antiestrogens: structure-activity relationships. Toxicol Appl Pharmacol 145:111–123.

    Article  PubMed  CAS  Google Scholar 

  • Cushman M, He HM, Katzenellenbogen JA, Lin CM, Hamel E (1995) Synthesis, antitubulin and antimitotic activity, and cytotoxicity of analogs of 2-methoxyestradiol, an endogenous mammalian metabolite of estradiol that inhibits tubulin polymerization by binding to the colchicine binding site. J Med Chem 38:2041–2049.

    Article  PubMed  CAS  Google Scholar 

  • Dees C, Foster JS, Ahamed S, Wimalasena J (1997) Dietary estrogens stimulate human breast cells to enter the cell cycle. Environ Health Perspect 105[Suppl 3]:633–636.

    Article  PubMed  CAS  Google Scholar 

  • Demirpence E, Duchesne M-J, Badia E, Gagne D, Pons M (1993) MVLN cells: A bioluminescent MCF-7-derived cell line to study the modulation of estrogenic activity. J Steroid Biochem Molec Biol 46:355–364.

    Article  PubMed  CAS  Google Scholar 

  • Doré J-C, Gilbert J, Bignon E, Crastes de Paulet A, Ojasoo T, Pons M, Raynaud J-P, Miquel J-F (1992) Multivariate analysis by the minimum spanning tree method of the structural determinants of diphenylethylenes and triphenylacrylonitriles implicated in estrogen receptor binding, protein kinase C activity, and MCF7 cell proliferation. J Med Chem 35:573–583.

    Article  PubMed  Google Scholar 

  • Duax WL, Swenson DC, Strong PD, Korach KS, McLachlan J, Metzler M (1984) Molecular structures of metabolites and analogues of diethylstilbestrol and their relationship to receptor binding and biological activity. Mol Pharmacol 26:520–525.

    PubMed  CAS  Google Scholar 

  • Duax WL, Griffin JF (1987) Structural features which distinguish estrogen agonist and antagonist. J Steroid Biochem Molec Biol 27:271–280.

    CAS  Google Scholar 

  • Durani N, Jain R, Saeed A, Dikshit DK, Durani S, Kapil RS (1989) Structure-activity relationship of antiestrogens: A study using triarylbutenone, benzofuran, and triarylfuran analogues as models for triarylethylenes and triarylpropenones. J Med Chem 32:1700–1707.

    Article  PubMed  CAS  Google Scholar 

  • Erber S (1989) Synthese und Testung mammatumorhemmender Derivate des 2-Phenylindols,-benzo[b]furans und benzo[b]thiophens. Ph D Theses, University of Regensburg.

    Google Scholar 

  • Fevig TL, Mao MK, Katzenellenbogen JA (1988) Estrogen receptor binding tolerance of 16α-substituted estradiol derivatives. Steroids 51:471–497.

    Article  PubMed  CAS  Google Scholar 

  • Gauthier S, Caron B, Cloutier J, Dory YL, Favre A, Larouche D, Mailhot J, Ouellet C, Schwerdtfeger A, Leblanc G, Martel C, Simard J, Mérand Y, Bélanger A, Labrie C, Labrie F (1997) (S)-(+)-[4-[7-(2,2-dimethyl-1-oxopropoxy)-4-methyl-2-[4-[2-(1-piperidinyl)ethoxy]phenyl-2H-1-benzopyran-3-yl] phenyl]-2,2-dimethyl-propanoate (EM-800): A highly potent, specific and orally active non-steroidal antiestrogen. J Med Chem 40:2117–2122.

    Article  PubMed  CAS  Google Scholar 

  • Gottardis MM, Jiang SY, Jeng MH, Jordan VC (1989) Inhibition of tamoxifenstimulated growth of an MCF-7 tumor variant in athymic mice by novel steroidal antiestrogens. Cancer Res 49:4090–4093.

    PubMed  CAS  Google Scholar 

  • Grese TA, Cole HW, Magee DE, Phillips DL, Shetler PK, Short LL, Glasebrook AL, Bryant HU (1996) Conversion of the phytoestrogen coumestrol into a selective estrogen receptor modulator (SERM) by attachment of an amine-containing sidechain. Bioorg Med Chem Lett 6:2683–2686.

    Article  CAS  Google Scholar 

  • Grese TA, Cho S, Finley DR, Godfrey AG, Jones CD, Lugar CW, Martin MJ, Matsumoto K, Pennington LD, Winter MA, Adrian MD, Cole HW, Magee DE, Phillips DL, Rowley ER, Short LL, Glasebrook AL, Bryant HU (1997) Structure-activity relationships of selective estrogen receptor modulators: modifications to the 2-arylbenzothiophene core of raloxifene. J Med Chem 40:146–167.

    Article  PubMed  CAS  Google Scholar 

  • Hafner F, Holler E, von Angerer E (1996) Effect of growth factors on estrogen receptor mediated gene expression. J Steroid Biochem Molec Biol 58:385–393.

    Article  PubMed  CAS  Google Scholar 

  • Hanson RN, Napolitano E, Fiaschi R, Onan KD (1990) Synthesis and estrogen receptor binding of novel 11β-substituted estra-1,3,5(10)-triene-3,17β-diols. J Med Chem 33:3155–3160.

    Article  PubMed  CAS  Google Scholar 

  • Hanson RN, Herman LW, Fiaschi R, Napolitano E (1996) Stereochemical probes for the estrogen receptor: synthesis and receptor binding of (17α,20E/Z)-21-phenyl-19-norpregna-l,3,5(10),20-tetraene-3,17β-diols. Steroids 61:718–722.

    Article  PubMed  CAS  Google Scholar 

  • Hartmann RW, Buchborn H, Kranzfelder G, Schönenberger H (1981) Potential antiestrogens. Synthesis and evaluation of mammary tumor inhibiting activity of 1,2-dialkyl-1,2-bis(3′-hydroxyphenyl)ethanes. J Med Chem 24:1192–1197.

    Article  PubMed  CAS  Google Scholar 

  • Hartmann RW, Schwarz W, Schönenberger H (1983) Ring-substituted 1,2-dialkylated l,2-bis(hydroxyphenyl)ethanes. 1. Synthesis and estrogen receptor binding affinity of 2,2′-and 3,3′-disubstituted hexestrols. J Med Chem 26:1137–1144.

    Article  PubMed  CAS  Google Scholar 

  • Hartmann RW, Heindl A, Schwarz W, Schönenberger H (1984) Ring-substituted 1,2-dialkylated 1,2-bis(hydroxyphenyl)ethanes. Synthesis, estrogen receptor binding affinity, and evaluation of antiestrogenic and mammary tumor inhibiting activity of 2,2′-disubstituted butestrol and 6,6′-disubstituted metabutestrols. J Med Chem 27:819–824.

    Article  PubMed  CAS  Google Scholar 

  • Howell A, De Friend D, Robertson J, Blarney R, Walton P (1995) Response to a specific antiestrogen (ICI 182780) in tamoxifen-resistant breast cancer. Lancet 345:29–30.

    Article  PubMed  CAS  Google Scholar 

  • Jin L, Borras M, Lacroix M, Legros N, Leclercq G (1995) Antiestrogenic activity of two 11β-estradiol derivatives on MCF-7 breast cancer cells. Steroids 60:512–518.

    Article  PubMed  CAS  Google Scholar 

  • Jones CD, Jevnikar MG, Pike AJ, Peters MK, Black LJ, Thompson AR, Falcone JF, Clemens JA (1984) Antiestrogens. 2. Structure-activity studies in a series of 3-aroyl-2-arylbenzo[b]thiophene derivatives leading to [6-hydroxy-2-(4-hydroxy-phenyl)benzo[b]thien-3-yl][4-[2-(1-piperidinyl)ethoxy]phenyl]methanone hydrochloride (LY156758), a remarkably effective estrogen antagonist with only minimal intrinsic estrogenicity. J Med Chem 27:1057–1066.

    Article  PubMed  CAS  Google Scholar 

  • Kaspar P, Witzel H (1985) Steroid binding to the cytosolic estrogen receptor from rat uterus. Influence of the orientation of substituents in the 17-position of the 8β-and 8α-series. J Steroid Biochem 23:259–265.

    Article  PubMed  CAS  Google Scholar 

  • Katzenellenbogen JA, Carlson KE, Katzenellenbogen BS (1985) Facile geometric iso-merization of phenolic non-steroidal estrogens and antiestrogens: limitations to the interpretation of experiments characterizing the activity of individual isomers. J Steroid Biochem 22:589–596.

    Article  PubMed  CAS  Google Scholar 

  • Katzenellenbogen BS, Fang H, Ince BA, Pakdel F, Reese JC, Wooge CH, Wrenn CK (1993) William L. McGuire Memorial Symposium. Estrogen receptors: ligand discrimination and antiestrogen action. Breast Cancer Res Treat 27:17–26.

    Article  PubMed  CAS  Google Scholar 

  • Kramer VJ, Halferich WG, Bergman A, Klasson Wheler E, Giesy JP (1997) Hydroxylated polychlorinated biphenyl metabolites are antiestrogenic in a stably transfected human breast adenocarcinoma (MCF7) cell line. Toxicol Appl Pharmacol 144:363–376.

    Article  PubMed  CAS  Google Scholar 

  • Kranzfelder G, Schneider M, von Angerer E, Schönenberger H (1980) Entwicklung neuer Antiöstrogene vom Typ des 3,3′-Dihydroxy-α,β-diäthylstilbens und ihre Prüfung am DMBA-induzierten, hormonabhängigen Mammacarcinom der SD-Ratte. J Cancer Res Clin Oncol 97:167–186.

    Article  PubMed  CAS  Google Scholar 

  • Kranzfelder G, Hartmann RW, von Angerer E, Schönenberger H, Bogden AE (1982) 3,4-Bis(3′-hydroxyphenyl)hexane-a new mammary tumor-inhibiting compound. J Cancer Res Clin Oncol 103:165–180.

    Article  PubMed  CAS  Google Scholar 

  • Kuiper GG, Gustafsson JA (1997) The novel estrogen receptor-beta subtype: potential role in the cell-and promoter-specific actions of estrogens and anti-estrogens. FEBS Lett 410:87–90.

    Article  PubMed  CAS  Google Scholar 

  • Kuiper GG, Carlsson B, Grandien K, Enmark E, Haggblad J, Nilsson S, Gustafsson JA (1997) Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 138:863–870.

    Article  PubMed  CAS  Google Scholar 

  • Kym PR, Anstead GM, Pinney KG, Wilson SR, Katzenellenbogen JA (1993) Molecular structures, conformational analysis, and preferential modes of binding of 3-aroyl-2-arylbenzo[b]thiophene estrogen receptor ligands: LY117018 and aryl azide photoaffinity labeling analogs. J Med Chem 36:3910–3922.

    Article  PubMed  CAS  Google Scholar 

  • Lee YJ, Notides AC, Tsay Y-G, Kende AS (1977) Coumestrol, NBD-norhexestrol, and dansy-norhexestrol, fluorescent probes for estrogen-binding proteins. Biochemistry 16:2896–2901.

    Article  PubMed  CAS  Google Scholar 

  • Lien LL, Lien EJ (1996) Hormone therapy and phytoestrogens. J Clin Pharm Ther 21:101–111.

    Article  PubMed  CAS  Google Scholar 

  • Lovely CJ, Gilbert NE, Liberto MM, Sharp DW, Lin YC, Brueggemeier RW (1996) 2-(Hydroxyalkyl)estradiols: Synthesis and Biological Evaluation. J Med Chem 39:1917–1923.

    Article  PubMed  CAS  Google Scholar 

  • Marselos M, Tomatis L (1992) Diethylstilboestrol: I, pharmacology, toxicology and carcinogenicity in humans. Eur J Cancer 28 A: 1182–1189.

    Article  Google Scholar 

  • McCague R, Leclercq G, Jordan VC (1988) Nonisomerizable analogues of (Z)-and (E)-4-hydroxytamoxifen. Synthesis and endocrinological properties of substituted diphenylbenzocycloheptenes. J Med Chem 31:1285–1290.

    Article  PubMed  CAS  Google Scholar 

  • McCague R, Leclercq G, Legros N, Goodman J, Blackburn GM, Jarmann M, Foster AB (1989) Derivatives of tamoxifen. Dependence of antiestrogenicity on the 4-substituent. J Med Chem 32:2527–2533.

    Article  PubMed  CAS  Google Scholar 

  • Meyer T, Koop R, von Angerer E, Holler E (1994) A rapid luciferase transfection assay for transcription activation effects and stability control of estrogenic drugs in cell culture. J Cancer Res Clin Oncol 120:359–364.

    Article  PubMed  CAS  Google Scholar 

  • Meyers CY, Lufti HG, Adler S (1997) Transcriptional regulation of estrogenresponsive genes by non-steroidal estrogens: doisynolic and allenolic acids. J Steroid Biochem Molec Biol 62:477–489.

    Article  PubMed  CAS  Google Scholar 

  • Meyers CY, Kolb VM, Gass GH, Rao BR, Roos CF, Dandliker WB (1988) Doisynolic-type acids — uterotropically potent estrogens which compete poorly with estradiol for cytosolic estradiol receptors. J Steroid Biochem 31:393–404.

    Article  PubMed  CAS  Google Scholar 

  • Miksicek RJ (1994) Interaction of naturally occurring nonsteroidal estrogens with expressed recombinant human estrogen receptor. J Steroid Biochem Molec Biol 49:153–160.

    Article  PubMed  CAS  Google Scholar 

  • Mittal S, Durani S, Kapil RS (1985) Structure-activity relationship of estrogens: receptor affinity and estrogen antagonist activity of certain (E)-and (Z)-1,2,3-triaryl-2-propen-1-ones. J Med Chem 28:492–497.

    Article  PubMed  CAS  Google Scholar 

  • Napolitano E, Fiaschi R, Hanson RN (1991) Structure-activity relationships of estrogenic ligands: synthesis and evaluation of (17α,20E)-and (17α,20Z)-21-halo-19-norpregna-1,3,5(10),20-tetraene-3,17β-diols. J Med Chem 34:2754–2759.

    Article  PubMed  CAS  Google Scholar 

  • Napolitano E, Fiaschi R, Herman LW, Hanson RN (1996) Synthesis and estrogen receptor binding of (17α,20E)-and (17α,20Z)-21-phenylthio-and 21-phenyl-19-nor-pregna-1,3,5(10),20-tetraene-3,17β-diols. Steroids 61:384–389.

    Article  PubMed  CAS  Google Scholar 

  • Newton CJ, Buric R, Trapp T, Brockmeier S, Pagotto U, Stalla GK (1994) The unliganded estrogen receptor (ER) transduces growth factor signals. J Steroid Biochem Molec Biol 48:481–486.

    Article  PubMed  CAS  Google Scholar 

  • Nique F, Van de Velde P, Brémaud J, Hardy M, Philibert D, Teutsch G (1994) 11β-ami-doalkoxyphenyl estradiols, a new series of pure antiestrogens. J Steroid Biochem Molec Biol 50:21–29.

    Article  PubMed  CAS  Google Scholar 

  • Nishino Y, Schneider MR, Michna H, von Angerer E (1991) Pharmacological characterisation of a novel estrogen antagonist, ZK 119010, in rats and mice. J Endocrinol 130:409–414.

    Article  PubMed  CAS  Google Scholar 

  • Odum J, Lefevre PA, Tittensor S, Paton D, Routledge EJ, Beresford NA, Sumpter JP, Ashby J (1997) The rodent uterotrophic assay: critical protocol features, studies with nonyl phenols, and comparison with a yeast estrogenicity assay. Regul Toxicol Pharmacol 25:176–188.

    Article  PubMed  CAS  Google Scholar 

  • Palkowitz AD, Glasebrook AL, Thrasher KJ, Hauser KL, Short LL, Phillips DL, Muchl BS, Sato M, Shetler PK, CuUinan GJ, Pell TR, Bryant HU (1997) Discovery and synthesis of [6-hydroxy-3-[4-[2-(1-piperidinyl)ethoxy]phenoxy]-2-(hydroxy-phenyl)]benzo[b]thiophene: a novel, highly potent, selective estrogen receptor modulator. J Med Chem 40:1407–1416.

    Article  PubMed  CAS  Google Scholar 

  • Palomino E, Heeg MJ, Horwitz JP, Polin L, Brooks SC (1994) Skeletal conformations and receptor binding of some 9,11-modified estradiols. J Steroid Biochem Molec Biol 50:75–84.

    Article  PubMed  CAS  Google Scholar 

  • Palomino E, Heeg MJ, Pilat MJ, Hafner M, Polin L, Brooks SC (1997) Crystal structure, receptor binding, and gene regulation of 2-and 4-nitroestradiols. Steroids 61:670–676.

    Article  Google Scholar 

  • Pelletier JD, Labrie F, Poirier D (1994) N-butyl, N-methyl, 11-[3′,17′β-(dihydroxy)-1′,3′,5′(10′)-estratrien-16′α-yl]-9(R/S)-bromo undecanamide: Synthesis and 17β-HSD inhibiting, estrogenic and antiestrogenic activities. Steroids 59:536–547.

    Article  PubMed  CAS  Google Scholar 

  • Pelletier JD, Poirier D (1996) Synthesis and evaluation of estradiol derivatives with 16α-(bromoalkylamide), 16α-(bromoalkyl or 16α-(bromoalkynyl) side chain as inhibitors of 17-hydroxysteroid dehydrogenase type 1 without estrogenic activity. Biorg Med Chem 4:1617–1628.

    Article  CAS  Google Scholar 

  • Pento JT, Magarian RA, Wright RJ, King MM, Benjamin EJ (1981) Nonsteroidal estrogens antiestrogens: Biological activity of cyclopropyl analogs of stilbene and stilbenediol. J Pharm Sci 70:399–403.

    Article  PubMed  CAS  Google Scholar 

  • Pilat MJ, Hafner MS, Kral LG, Brooks SC (1993) Differential induction of pS2 and cathepsin D mRNAs by structurally altered estrogens. Biochemistry 32:7009–7015.

    Article  PubMed  CAS  Google Scholar 

  • Poirier D, Labrie C, Mérand Y, Labrie F (1990) Derivatives of ethynylestradiol with oxygenated 17α-alkyl side chain: synthesis and biological activity. J Steroid Biochem Molec Biol 36:133–142.

    CAS  Google Scholar 

  • Poirier D, Labrie C, Merand Y, Labrie F (1991) Synthesis and biological activity of 17α-alkynylamide derivatives of estradiol. J Steroid Biochem Molec Biol 38:759–774.

    Article  PubMed  CAS  Google Scholar 

  • Pomper MG, VanBroeklin H, Thieme AM, Thomas RD, Kiesewetter DO, Carlson KE, Mathias CJ, Welch MJ, Katzenellenbogen JA (1990) 11β-Methoxy-, 11β-ethyl-and 17α-ethynyl-substituted 16α-fluoroestradiols: Receptor-based imaging agents with enhanced uptake efficiency and selectivity. J Med Chem 33:3143–3155.

    Article  PubMed  CAS  Google Scholar 

  • Quian X, Abul-Hajj YJ (1990a) Synthesis and biological activity of 4-methylestradiol. J Steroid Biochem 35:745–747.

    Article  Google Scholar 

  • Quian X, Abul-Hajj YJ (1990b) Synthesis and biologic activities of 11βsubstituted estradiol as potential antiestrogens. Steroids 55:238–241.

    Article  Google Scholar 

  • Quivy J, Leclerq G, Deblaton M, Henrot P, Velings N, Norberg B, Ervard G, Zeicher M (1996) Synthesis, structure and biological properties of Z-17α-(2-iodovinyl)-11-β=chloromethyl estradiol-17β (Z-CMIV), a high affinity ligand for the characterization of estrogen receptor-positive tumors. J Steroid Biochem Mol Biol 59:103–117.

    Article  PubMed  CAS  Google Scholar 

  • Reese JC, Katzenellenbogen BS (1991) Differential DNA-binding abilities of estrogen receptor occupied with two classes of antiestrogens: studies using human estrogen receptor overexpressed in mammalian cells. Nucleic Acids Res 19:6595–6602.

    Article  PubMed  CAS  Google Scholar 

  • Reiner GCA, Katzenellenbogen BS, Bindal RD, Katzenellenbogen JA (1984) Biological activity and receptor binding of a strongly interacting estrogen in human breast cancer cells. Cancer Res 44:2302–2308.

    PubMed  CAS  Google Scholar 

  • Robertson DW, Katzenellenbogen JA, Long DJ, Rorke EA, Katzenellenbogen BS (1982) Tamoxifen antiestrogens. A comparison of the activity, pharmacokinetics, and metabolic activation of the cis and trans isomers of tamoxifen. J Steroid Biochem 16:1–13.

    Article  PubMed  CAS  Google Scholar 

  • Routledge EJ, Sumpter JP (1997) Structural features of alkylphenolic chemicals associated with estrogenic activity. J Biol Chem 272:3280–3288.

    Article  PubMed  CAS  Google Scholar 

  • Rubin BL, Dorfman AS, Black L, Dorfman RI (1951) Bioassay of estrogens using the mouse uterine response. Endocrinology 49:429–439.

    Article  PubMed  CAS  Google Scholar 

  • Saeed A, Sharma AP, Durani N, Jain R, Durani S, Kapil RS (1990) Structure-activity relationship of antiestrogens. Studies on 2,3-diaryl-1-benzopyrans. J Med Chem 33:3210–3216.

    Article  PubMed  CAS  Google Scholar 

  • Sasson S, Katzenellenbogen JA (1989) Reversible, positive cooperative interaction of 11β-chloromethyl-[3H]estradiol-17β with the calf uterine estrogen receptor. J Steroid Biochem 33:859–865.

    Article  PubMed  CAS  Google Scholar 

  • Schneider M, von Angerer E, Kranzfelder G, Schönenberger H (1980) Mammatumorhemmende Antiöstrogene vom Typ des 3,3′-Dihydroxy-α,β-dialkylstilbens. Arch Pharm (Weinheim) 313:919–925.

    Article  CAS  Google Scholar 

  • Schneider MR, Kranzfelder G, von Angerer E, Schönenberger H, Metzler M, Michel RT, Fortmeyer HP, Ruckdeschel G (1981) The tumor-inhibiting effect of diethyl-stilbestrol-3,4-oxide. J Cancer Res Clin Oncol 100:247–254.

    Article  PubMed  CAS  Google Scholar 

  • Schneider MR, Schönenberger H, Michel RT (1982a) Mammary tumor inhibiting [(1,2-diethyl-l,2-cyclopropanediyl)bis(phenyl)] diacetates. Eur J Med Chem — Chim Ther 17:491–495.

    CAS  Google Scholar 

  • Schneider MR, von Angerer E, Schönenberger H (1982b) 5-Acetoxy-2-(3′-ace-toxyphenyl)-3-ethyl-1-methyl-1H-indene: a new mammary tumor inhibiting compound. Eur J Med Chem-Chim Ther 17:245–248.

    CAS  Google Scholar 

  • Schneider MR, Ball H (1986) 2-Phenylindenes: Development of a new mammary tumor inhibiting antiestrogen by combination of estrogenic side effect lowering structural elements. J Med Chem 29:75–79.

    Article  PubMed  CAS  Google Scholar 

  • Schütze N, Vollmer G, Wünsche W, Grote A, Feit B, Knuppen R (1994) Binding of 2-hydroxyestradiol and 4-hydroxyestradiol to the estrogen receptor of MCF-7 cells in cytosolic extracts and in nuclei of intact cells. Exp Clin Endocrinol 102:399–408.

    Article  PubMed  Google Scholar 

  • Schwartz JA, Skafar DF (1993) Ligand-mediated modulation of estrogen receptor conformation by estradiol analogs. Biochemistry 32:10109–10115.

    Article  PubMed  CAS  Google Scholar 

  • Sharma AP, Saeed A, Durani S, Kapil RS (1990a) Structure-activity relationship of antiestrogens. Effect of the side chain and its position on the activity of 2,3-diaryl-2H-1-benzopyrans. J Med Chem 33:3216–3222.

    Article  PubMed  CAS  Google Scholar 

  • Sharma AP, Saeed A, Durani S, Kapil RS (1990b) Structure-activity relationship of antiestrogens. Phenolic analogues of 2,3-diaryl-2H-1-benzopyrans. J Med Chem 33:3222–3229.

    Article  PubMed  CAS  Google Scholar 

  • Souttou B, Moretti J-L, Gros J, Guilloteau D, Crepin M (1993) Receptor binding and biological effects of three 125I-iodinated estrogen derivatives in human breast cancer cells (MCF-7). J Steroid Biochem Molec Biol 44:105–112.

    Article  PubMed  CAS  Google Scholar 

  • Symes EK, Bishop PB, Coulson WF, Davies AG (1992) 17α-Z-[125I]iodovinyloestradiol and its 3-acetate: chemical synthesis in vivo distribution studies in the rat. Comparison of tissue accumulation and metabolic stability with 17α-E-[125I]iodovinyl and 16α-[125I]iodo oestradiols. Biochem Pharmacol 44:741–746.

    Article  PubMed  CAS  Google Scholar 

  • Tedesco R, Katzenellenbogen JA, Napolitano E (1997) 7α, 11β-Disubstituted estrogens: probes for the shape of the ligand binding pocket in the estrogen receptor. Bioorg Med Chem Lett 7:2919–2924.

    Article  CAS  Google Scholar 

  • Tong W, Perkins R, Xing L, Welsh WJ, Sheehan DM (1997) QSAR models for binding of estrogenic compounds to estrogen receptor alpha and beta subtypes. Endocrinology 138:4022–4025.

    Article  PubMed  CAS  Google Scholar 

  • Van de Velde P, Nique F, Bouchoux F, Brémaud J, Hameau M-C, Lucas D, Moratille C, Viet S, Philibert D, Teutsch G (1994) RU 58 668, a new pure antiestrogen inducing a regression of human mammary carcinoma implanted in nude mice. J Steroid Biochem Molec Biol 48:187–196.

    Article  PubMed  Google Scholar 

  • Van de Velde P, Nique F, Planchon P, Prevost G, Bremaud J, Hameau MC, Magnien V, Philibert D, Teutsch G (1996) RU 58668: further in vitro and in vivo pharmacological data related to its antitumoral activity. J Steroid Biochem Molec Biol 59:449–457.

    Article  PubMed  Google Scholar 

  • VanderKuur JA, Hafner MS, Christman JK, Brooks SC (1993a) Effects of estradiol-17β analogues on activation of estrogen response element regulated chloramphenicol acetyltransferase expression. Biochemistry 32:7016–7021.

    Article  PubMed  CAS  Google Scholar 

  • VanderKuur JA, Wiese T, Brooks SC (1993b) Influence of estrogen structure on nuclear binding and progesterone receptor induction by the receptor complex. Biochemistry 32:7002–7008.

    Article  PubMed  CAS  Google Scholar 

  • Vollmer G, Wünsche W, Schütze N, Feit B, Knuppen R (1991) Methyl and bromo derivatives of estradiol are agonistic ligands for the estrogen receptor of MCF-7 breast cancer cells. J Steroid Biochem Molec Biol 39:359–366.

    Article  PubMed  CAS  Google Scholar 

  • Von Angerer E, Prekajac J, Strohmeier J (1984) 2-Phenylindoles. Relationship between structure, estrogen receptor affinity, and mammary tumor inhibiting activity in the rat. J Med Chem 27:1439–1447.

    Article  Google Scholar 

  • Von Angerer E, Knebel N, Kager M, Ganβ B (1990) 1-Aminoalkyl-2-phenylindoles as novel pure estrogen antagonists. J Med Chem 33:2635–2640.

    Article  Google Scholar 

  • Von Angerer E, Erber S (1992) 3-Alkyl-2-phenylbenzo[b]thiophenes: Nonsteroidal estrogen antagonists with mammary tumor inhibiting activity. J Steroid Biochem Molec Biol 41:557–562.

    Article  Google Scholar 

  • Von Angerer E, Biberger C, Holler E, Koop R, Leichtl S (1994) 1-Carbamoylalkyl-2-phenylindoles: Relationship between side chain structure and estrogen antagonism. J Steroid Biochem Molec Biol 49:51–62.

    Article  Google Scholar 

  • Von Angerer E (1995) The estrogen receptor as a target for rational drug design. R.G. Landes Company, Austin, Texas.

    Google Scholar 

  • Von Angerer E, Biberger C, Leichtl S (1995) Studies on heterocycle-based pure estrogen antagonists. Ann N Y Acad Sci 761:176–191.

    Article  Google Scholar 

  • Wakeling AE, Bowler J (1988a) Novel antiestrogens without partial agonist activity. J Steroid Biochem 31:645–653.

    Article  PubMed  CAS  Google Scholar 

  • Wakeling AE, Bowler J (1988b) Biology and mode of action of pure antiestrogens. J Steroid Biochem Molec Biol 30:141–147.

    CAS  Google Scholar 

  • Wakeling AE (1991) Steroidal pure antiestrogens. In: Lippman M, Dickson R (eds) Regulatory mechanisms in breast cancer. Kluwer Academic Publishers, Boston, pp 239–257.

    Chapter  Google Scholar 

  • Wakeling AE, Dukes M, Bowler J (1991) A potent specific pure antiestrogen with clinical potential. Cancer Res 51:3867–3873.

    PubMed  CAS  Google Scholar 

  • Waller CL, Oprea TI, Chae K, Park HK, Korach KS, Laws SC, Wiese TE, Kelce WR, Gray LEJ (1996) Ligand-based identification of environmental estrogens. Chem Res Toxicol 9:1240–1248.

    Article  PubMed  CAS  Google Scholar 

  • Wiese TE, Brooks SC (1994) Molecular modeling of steroidal estrogens: novel conformations and their role in biological activity. J Steroid Biochem Molec Biol 50:61–73.

    Article  PubMed  CAS  Google Scholar 

  • Wiese TE, Polin LA, Palomino E, Brooks SC (1997) Induction of the estrogen specific mitogenic response of MCF-7 cells by selected analogues of estradiol-17β: a 3D QSAR study. J Med Chem 40:3659–3669.

    Article  PubMed  CAS  Google Scholar 

  • Willson TM, Norris JD, Wagner BL, Asplin I, Baer P, Brown HR, Jones SA, Henke B, Sauls H, Wolfe S, Morris DC, McDonnell DP (1997) Dissection of the molecular mechanism of action of GW5638, a novel estrogen receptor ligand, provides insights into the role of estrogen receptor in bone. Endocrinology 138:3901–3911.

    Article  PubMed  CAS  Google Scholar 

  • Zeicher M, Delcorde A, Quivy J, Dupuis Y, Vervist A, Fruhling J (1996) Radioimaging of human breast carcinoma xenografts in mice by [123I]-labeled Z-17α-iodovinyl-11β-chloromethyl-estradiol. Nucl Med Biol 23:69–73.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

von Angerer, E. (1999). Structure-Activity Relationships. In: Oettel, M., Schillinger, E. (eds) Estrogens and Antiestrogens I. Handbook of Experimental Pharmacology, vol 135 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58616-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58616-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63667-7

  • Online ISBN: 978-3-642-58616-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics