Skip to main content

Molecular Mechanisms of Antiestrogen Action

  • Chapter
Estrogens and Antiestrogens I

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 135 / 1))

  • 255 Accesses

Abstract

Antiestrogens are established as compounds which predominantly exert their actions by competing with estrogen for binding to the target steroid receptor. This is evidenced by the observations that their biological effects are most notably recognised in tissues that contain ER; they often structurally resemble estrogens in regions which are important for the binding of the steroid nucleus to the ER and their ER binding, while of differing efficiency, always displaces and/or prevents the association of estrogens (Nicholson, 1993). Simplistically, as a consequence of such binding, antiestrogens subsequently reduce estrogen signalling within responsive cells. In practice, however, they display a bewildering diversity of biological properties, with tissue-specific actions that are not easily reconciled with such a basic model (Furr and Jordan 1984; Nicholson et al. 1986). Thus, while the non-steroidal triph-enylethylene compound tamoxifen (the most widely prescribed antiestrogenic drug used in the therapy of breast cancer) promotes objective tumour remissions in approximately 30–50% of women (presumably an antiestrogenic response), it shows many estrogen-like characteristics on endometrium, bone and the cardiovascular system (Powles 1997). Indeed, long-term tamoxifen therapy, while delaying the recurrence of primary breast cancer and reducing the incidence of contralateral cancers (Early Breast Cancer Trialist’s Collaborative Group 1992), promotes a significant increase in the development of endometrial cancers (presumably an estrogenic response; Cohan 1997), with possible additional detrimental effects on the liver (Wogan 1997).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ali S, Metzger D, Bornert JM, Chambon P (1993) Modulation of transcriptional activation by ligand-dependent phosphorylation of the human estrogen receptor A/B region. EMBO J 12(3):1153–1160.

    PubMed  CAS  Google Scholar 

  • Anzick SL, Kononen J, Walker RL, Azorsa DO, Tanner MM, Guan XY, Sauter G, Kallioniemi OP, Trent JM, Meltzer PS (1997) AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 277(5328):965–968.

    Article  PubMed  CAS  Google Scholar 

  • Archer SG, Eliopoulos A, Spandidos D, Barnes D, Ellis IO, Blarney RW, Nicholson RI, Robertson JF (1995) Expression of ras p21, p53 and c-erbB-2 in advanced breast cancer and response to first line hormonal therapy. Br J Cancer 72:1259–1266.

    Article  PubMed  CAS  Google Scholar 

  • Arnold SF, Obourn JD, Jaffe H, Notides AC (1994) Serine 167 is the major estradiolinduced phosphorylation site on the human estrogen receptor. Mol Endocrinol 8(9):1208–1214.

    Article  PubMed  CAS  Google Scholar 

  • Arnold SF, Obourn JD, Jaffe H, Notides AC (1995a) Phosphorylation of the human estrogen receptor ontyrosine 537 in vivo and by src family tyrosine kinases in vitro. Mol Endocrinol 9(1):24–33.

    Article  PubMed  CAS  Google Scholar 

  • Arnold SF, Obourn JD, Jaffe H, Notides AC (1995b) Phosphorylation of the human estrogen receptor bymitogen-activated protein kinase and casein kinase II: consequence on DNA binding. J Steroid Biochem Mol Biol 55(2):163–172.

    Article  PubMed  CAS  Google Scholar 

  • Arnold SF, Melamed M, Vorojeikina DP, Notides AC, Sasson S (1997) Estradiolbinding mechanism and binding capacity of the human estrogen receptor is regulated by tyrosinephosphorylation. Mol Endocrinol 11(1):48–53.

    Article  PubMed  CAS  Google Scholar 

  • Aronica SM, Katzenellenbogen BS (1993) Stimulation of estrogen receptor-mediated transcription and alteration in the phosphorylation state of the ratuterine estrogen receptor by estrogen, cyclic adenosinemonophosphate, and insulin-like growth factor-I. Mol Endocrinol 7(6):743–752.

    Article  PubMed  CAS  Google Scholar 

  • Bartlett JM, Hulme MJ, Miller WR (1996) Analysis of cAMP RI alpha mRNA expression in breast cancer: evaluation of quantitative polymerase chain reaction for routine use. Br J Cancer 73:538–1544.

    Google Scholar 

  • Beekman JM, Allan GF, Tsai SY, Tsai MJ, O’Malley BW (1993) Transcriptional activation by the estrogen receptor requires a conformational change in the ligand binding domain. Mol Endocrinol 7(10):1266–1274.

    Article  PubMed  CAS  Google Scholar 

  • Berry M, Metzger D, Chambon P (1990) Role of the two activating domains of the estrogen receptor in the cell type and promoter-context dependent agonistic activity of the anti-estrogen 4-hydroxytamoxifen. EMBO J 9(9):2811–2818.

    PubMed  CAS  Google Scholar 

  • Berthois Y, Pons M, Dussert C, Crastes de Paulet A, Martin PM (1994) Agonistantagonist activity of anti-estrogens in the human breast cancer cell line MCF-7: an hypothesis for the interaction with a site distinct from the estrogen binding site. Mol Cell Endocrinol 99(2):259–268.

    Article  PubMed  CAS  Google Scholar 

  • Bland KI, Konstadoulakis MM, Vezeridis MP, Wanebo HJ (1994) Oncogene protein co-expression. Value of Ha-ras, c-myc, c-fos, and p53 as prognostic discriminants for breast carcinoma. Ann Surg 221:706–718.

    Article  Google Scholar 

  • Borg A, Baldetorp B, Ferno M, Killander D, Olsson H, Ryden S, Sigurdsson H (1994) ERBB2 amplification is associated with tamoxifen resistance in steroid-receptor positive breast cancer. Cancer Lett 81:137–144.

    Article  PubMed  CAS  Google Scholar 

  • Bowler J, Lilley TJ, Pittam JD, Wakeling AE (1989) Novel steroidal pure antiestrogens. Steroids 54(1):71–99.

    Article  PubMed  CAS  Google Scholar 

  • Brzozowski AM, Pike AC, Dauter Z, Hubbard RE, Bonn T, Engstrom O, Ohman L, Greene GL, Gustafsson JA, Carlquist M (1997) Molecular basis of agonism and antagonism in the estrogen receptor. Nature 389(6652):753–758.

    Article  PubMed  CAS  Google Scholar 

  • Bunone G, Briand PA, Miksicek RJ, Picard D (1996) Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation. EMBO J May 1;15(9):2174–2183.

    Google Scholar 

  • Butta A, MacLennan K, Flanders KC, Sacks NPM, Smith I, McKinna A, Dowsett M, Wakefield LM, Sporon MB, Baum M and Colletta AA (1992) Induction of transforming growth fator βin human breast cancer in vivo following tamoxifen treatment. Cancer Res 52:4261–4264.

    PubMed  CAS  Google Scholar 

  • Cabot MC, Zhang Z-H. Cao H-T, Lavie Y, Giulliano, AE, Han T-Y and Jones RC (1997) Tamoxifen activates cellular phospholipase C and D and elicits protein kinase C translocation. Int J Cancer 7:567–574.

    Article  Google Scholar 

  • Chalbos D, Philips A, Galtier F, Rochefort H (1993) Synthetic antiestrogens modulate induction of pS2 and cathepsin-D messenger ribonucleic acid by growth factors and adenosine 3′,5′-monophosphate in MCF7 cells. Endocrinology 133(2):571–576.

    Article  PubMed  CAS  Google Scholar 

  • Cheskis BJ, Karathanasis S, Lyttle CR (1997) Estrogen receptor ligands modulate its interaction with DNA. J Biol Chem 272(17):11384–11391.

    Article  PubMed  CAS  Google Scholar 

  • Cho H, Katzenellenbogen BS (1993) Synergistic activation of estrogen receptor-mediated transcription by estradiol and protein kinase activators. Mol Endocrinol 7(3):441–445.

    Article  PubMed  CAS  Google Scholar 

  • Cohan CJ (1997) Tamoxifen and endometrial cancer: Tamoxifen effects on the human female genital tract cancer. Seminars in Oncol 24:S1 55–S1 64.

    Google Scholar 

  • Coombes RC, Haynes BP, Dowsett M, Quigley M, English J, Judson IR, Griggs LJ, Potter GA, McCague R, Jarman M (1995) Idoxifene: report of a phase I study in patients with metastatic breast cancer. Cancer Res 55:1070–1074.

    PubMed  CAS  Google Scholar 

  • Dana SL, Hoener PA, Wheeler DA, Lawrence CB, McDonnell DP (1994) Novel estrogen response elements identified by genetic selection in yeast are differentially responsive to estrogens and antiestrogens in mammalian cells. Mol Endocrinol 8(9):1193–1207.

    Article  PubMed  CAS  Google Scholar 

  • Dati C, Muraca R, Tazartes O, Antoniotti S, Perroteau I, Giai M, Cortese P, Sismondi P, Saglio G, De Bortoli M (1991) c-erbB-2 and ras expression levels in breast cancer are correlated and show a co-operative association with unfavorable clinical outcome.

    Google Scholar 

  • Dauvois S, Danielian PS, White R, Parker MiG (1992) Antiestrogen ICI 164,384 reduces cellular estrogen receptor content by increasing its turnover. Proc Natl Acad Sci USA. 89:4037–4041.

    Article  PubMed  CAS  Google Scholar 

  • DeFriend DJ, Howell A, Nicholson RI, Anderson E, Dowsett M, Mansel RE, Blarney RW, Bundred NJ, Robertson JF, Saunders C et al. (1994) Investigation of a new pure antiestrogen (ICI 182780) in women with primary breast cancer. Cancer Res 54(2):408–414.

    PubMed  CAS  Google Scholar 

  • Desai AJ, Luqmani YA, Walters JE, Coope RC, Dagg B, Gomm JJ, Pace PE, Rees CN, Thirunavukkarasu V, Shousha S, Groome NP, Coombes R, Ali S (1997) Presence of exon 5-deleted estrogen receptor in human breast cancer: functional analysis and clinical significance. Br J Cancer 75(8):1173–1184.

    Article  PubMed  CAS  Google Scholar 

  • Draper MW, Flowers DE, Neild JA, Huster WJ, Zerbe RL (1995) Antiestrogenic properties of raloxifene. Pharmacology 50:209–217.

    Article  PubMed  CAS  Google Scholar 

  • Dukes M, Chester R, Yarwood L, Wakeling AE (1994) Effects of a non-steroidal pure antiestrogen, ZM 189,154, on estrogen target organs of the rat including bones. J Endocrinol 141:335–341.

    Article  PubMed  CAS  Google Scholar 

  • Eckert RL, Mullick A, Rorke EA, Katzenellenbogen BS (1984) Estrogen receptor synthesis and turnover in MCF-7 breast cancer cells measured by a density shift technique. Endocrinology 114:629–637.

    Article  PubMed  CAS  Google Scholar 

  • El-Ashry D, Miller DL, Kharbanda S, Lippman ME, Kern FG Constitutive (1997) Raf-1 kinase activity in breast cancer cells induces both estrogen-independent growth and apoptosis. Oncogene 15:423–435.

    Article  PubMed  CAS  Google Scholar 

  • Fawell SE, White R, Hoare S, Sydenham M, Page M, Parker MG (1990) Inhibition of estrogen receptor-DNA binding by the “pure” antiestrogen ICI 164,384 appears to be mediated by impaired receptor dimerization. Proc Natl Acad Sci USA 87(17):6883–6887.

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto N, Katzenellenbogen BS (1994) Alteration in the agonist/antagonist balance of antiestrogens by activation of protein kinase A signaling pathways in breast cancer cells: antiestrogen selectivity and promoter dependence. Mol Endocrinol 8(3):296–304.

    Article  PubMed  CAS  Google Scholar 

  • Fuqua SA, Wolf DM (1995) Molecular aspects of estrogen receptor variants in breast cancer. Breast Cancer Res Treat 35:233–241.

    Article  PubMed  CAS  Google Scholar 

  • Furr BJ, Jordan VC (1984) The pharmacology and clinical uses of tamoxifen. Pharmacol Ther 25(2):127–205.

    Article  PubMed  CAS  Google Scholar 

  • Gangolli EA, Conneely OM, O’Malley BW (1997) Neurotransmitters activate the human estrogen receptor in a neuroblastoma cell line. J Steroid Biochem Mol Biol 61(1–2):1–9.

    Article  PubMed  CAS  Google Scholar 

  • Gee JMW, Ellis IO, Robertson JF, Willsher P, McClelland RA, Hewitt KN, Blarney RW, Nicholson RI (1995) Immunocytochemical localization of Fos protein in human breast cancers and its relationship to a series of prognostic markers and response to endocrine therapy. Int J Cancer 64:269–273.

    Article  PubMed  CAS  Google Scholar 

  • Gee JMW, McClelland RA, Nicholson RI (1996) Growth factors and endocrine sensitivity in breast cancer. In: Pasqualini JR, Katzenellenbogen BS (eds) Molecular and Clinical Endocrinology. Marcel Dekker Publishing, pp 169-197.

    Google Scholar 

  • Gordge PC, Hulme MJ, Clegg RA, Miller WR (1996) Elevation of protein kinase A and protein kinase C activities in malignant as compared with normal human breast tissue. Eur J Cancer. 32 A: 2120–2126.

    Article  Google Scholar 

  • Gundimeda U, Chen Z-H, Gopalakrishna R (1996) Tamoxifen modulates protein kinase C via oxidative stress in estrogen receptor-negative breast cancer cells. J Biol Chem 271(23):13504–13514.

    Article  PubMed  CAS  Google Scholar 

  • Hafner F, Holler E, von Angerer E (1996) Effect of growth factors on estrogen receptor mediated gene expression. J Steroid Biochem Mol Biol 58(4):385–393.

    Article  PubMed  CAS  Google Scholar 

  • Hedden A, Muller V, Jensen EV (1995) A new interpretation of antiestrogen action. Ann N Y Acad Sci 761:109–120.

    Article  PubMed  CAS  Google Scholar 

  • Horwitz KB, Jackson TA, Bain DL, Richer JK, Takimoto GS, Tung L (1996) Nuclear receptor coactivators and corepressors. Mol Endocrinol 10(10):1167–1177.

    Article  PubMed  CAS  Google Scholar 

  • Jackson TA, Richer JK, Bain DL, Takimoto GS, Tung L, Horwitz KB (1997) The partial agonist activity of antagonist-occupied steroid receptors is controlled by a novel hinge domain-binding coactivator L7/SPA and the corepressors N-CoR or SMRT. Mol Endocrinol 11(6):693–705.

    Article  PubMed  CAS  Google Scholar 

  • Jin L, Borras M, Lacroix M, Legros N, Leclercq G (1995) Antiestrogenic activity of two 11 beta-estradiol derivatives on MCF-7 breast cancer cells. Steroids 60(8):512–518.

    Article  PubMed  CAS  Google Scholar 

  • Johnston SR, Haynes BP, Smith IE, Jarman M, Sacks NP, Ebbs SR, Dowsett M (1993) Acquired tamoxifen resistance in human breast cancer and reduced intra-tumoral drug concentration. Lancet 342(8886–8887): 1521–1522.

    Article  PubMed  CAS  Google Scholar 

  • Jordan VC, Gradishar WJ (1997) Molecular mechanisms and future uses of antiestrogens. Mol Aspects Med 18:167–247.

    Article  PubMed  CAS  Google Scholar 

  • Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H, Masushige S, Gotoh Y, Nishida E, Kawashima H, et al. (1995) Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270(5241):1491–1494.

    Article  PubMed  CAS  Google Scholar 

  • Ke HZ, Simmons HA, Pirie CM, Crawford DT, Thompson DD (1995) Droloxifene, a new estrogen antagonist/agonist, prevents bone loss in ovariectomized rats. Endocrinology 136:2435–2441.

    Article  PubMed  CAS  Google Scholar 

  • Kiang DT, Kollander RE, Thomas T, Kennedy BJ (1989) Up-regulation of estrogen receptors by nonsteroidal antiestrogens in human breast cancer. Cancer Res 49:5312–5316.

    PubMed  CAS  Google Scholar 

  • Kraus WL, Mclnerney EM, Katzenellenbogen BS (1995) Ligand-dependent, transcriptionally productiveassociation of the amino-and carboxyl-terminal regions of a steroid hormone nuclear receptor. Proc Natl Acad Sci USA 92(26):12314–12318.

    Article  PubMed  CAS  Google Scholar 

  • Kuiper GG, Brinkmann AO (1994) Steroid hormone receptor phosphorylation: is there a physiological role? Mol Cell Endocrinol 100(1–2): 103–107.

    Article  PubMed  CAS  Google Scholar 

  • Kuiper GG, Gustafsson JA (1997) The novel estrogen receptor-beta subtype: potential role in the cell-and promoter-specific actions of estrogens and anti-estrogens. FEBS Lett 410(1):87–90.

    Article  PubMed  CAS  Google Scholar 

  • Kumar V, Green S, Stack G, Berry M, Jin JR, Chambon P (1987) Functional domains of the human estrogen receptor. Cell 51(6):941–951.

    Article  PubMed  CAS  Google Scholar 

  • Kurebayashi S, Miyashita Y, Hirose T, Kasayama S, Akira S, Kishimoto T (1997) Characterization of mechanisms of interleukin-6 gene repression by estrogen receptor. J Steroid Biochem Mol Biol 60(1–2):11–17.

    Article  PubMed  CAS  Google Scholar 

  • Lam, H-YP (1984) Tamoxifen is a calmodulin antagonist in the activation of a cAMP phosphodiesterase. Biochem Biophys Res Comm 118:27–32.

    Article  PubMed  CAS  Google Scholar 

  • Le Goff P, Montano MM, Schodin DJ, Katzenellenbogen BS (1994) Phosphorylation of the human estrogen receptor. Identification of hormone-regulated sites and examination of their influence on transcriptional activity. J Biol Chem 269(6):4458–4466.

    PubMed  Google Scholar 

  • Lehrer S, O’Shaughnessy J, Song HK, Levine E, Savoretti P, Dalton J, Lipsztein R, Kalnicki S, Bloomer WD (1989) Activity of pp60c-src protein kinase in human breast cancer. Mt Sinai J Med. 56:83–85.

    PubMed  CAS  Google Scholar 

  • Maeda K, Tsuzimura T, Nomura Y, Sato B, Matsumoto K (1984)Partial characterization of protease(s) in human breast cancer cytosols that can degrade estrogen and progesterone receptors selectively. Cancer Res 44(3):996–1001.

    PubMed  CAS  Google Scholar 

  • Mani SK, Allen JM, Clark JH, Blaustein JD, O’Malley BW (1994) Convergent pathways for steroid hormone-and neurotransmitter-induced rat sexual behavior. Science 265(5176): 1246–1249.

    Article  PubMed  CAS  Google Scholar 

  • McClelland RA, Manning DL, Gee JM, Anderson E, Clarke R, Howell A, Dowsett M, Robertson JF, Blarney RW, Wakeling AE, Nicholson RI (1996) Effects of shortterm antiestrogen treatment of primary breast cancer on estrogen receptor mRNA and protein expression and on estrogen-regulated genes. Breast Cancer Res Treat 41:31–41.

    Article  PubMed  CAS  Google Scholar 

  • McDonnell DP, Vegeto E, O’Malley BW (1992) Identification of a negative regulatory function for steroid receptors. Proc Natl Acad Sci USA 89(22):10563–10567.

    Article  PubMed  CAS  Google Scholar 

  • McDonnell DP, Dana SL, Hoener PA, Lieberman BA, Imhof MO, Stein RB (1995) Cellular mechanisms which distinguish between hormone-and antihormone-activated estrogen receptor. Ann N Y Acad Sci 761:121–137.

    Article  PubMed  CAS  Google Scholar 

  • Mclnerney EM, Katzenellenbogen BS (1996) Different regions in activation function-1 of the human estrogen receptor required for antiestrogen-and estradioldependent transcription activation. J Biol Chem 271(39):24172–24178.

    Article  Google Scholar 

  • Mendes AF, Caramona MM, Lopes MC (1996) Changes in the subcellular distribution of the rat uterus estrogen receptor as induced by oestradiol, tamoxifen and ZD 182,780. J Pharm Pharmacol 48(3):302–305.

    Article  PubMed  CAS  Google Scholar 

  • Metzger D, Berry M, Ali S, Chambon P (1995) Effect of antagonists on DNA binding properties of the human estrogen receptor in vitro and in vivo. Mol Endocrinol 9(5):579–591.

    Article  PubMed  CAS  Google Scholar 

  • Montano MM, Kraus WL, Katzenellenbogen BS (1997) Identification of a novel transferable cis element in the promoter of an estrogen-responsive gene that modulates sensitivity to hormone and antihormone. Mol Endocrinol 11(3):330–341.

    Article  PubMed  CAS  Google Scholar 

  • Montano MM, Muller V, Trobaugh A, Katzenellenbogen BS (1995) The carboxyterminal F domain of the human estrogen receptor: role in the transcriptional activity of the receptor and the effectiveness of antiestrogens as estrogen antagonists. Mol Endocrinol 9(7):814–825.

    Article  PubMed  CAS  Google Scholar 

  • Newton CJ, Arzt E, Stalla GK (1994) Involvement of the estrogen receptor in the growth response of pituitary tumor cells to interleukin-2. Biochem Biophys Res Commun 205(3):1930–1937.

    Article  PubMed  CAS  Google Scholar 

  • Nicholson RI, Walker KJ and Davies P (1986) Hormone agonists and antagonists in the treatment of hormone sensitive breast and prostate. Cancer Surv 5:463–486.

    PubMed  CAS  Google Scholar 

  • Nicholson RI, Gotting KE, Gee J, Walker KJ (1998) Actions of estrogens and antiestrogens on rat mammary gland development: relevance to breast cancer prevention. J Steroid Biochem 30:95–103.

    Article  Google Scholar 

  • Nicholson RI, McClelland RA, Finlay P, Eaton CL, Gullick WJ, Dixon AR, Robertson JF, Ellis IO, Blarney RW (1993) Relationship between EGF-R, c-erbB-2 protein expression and Ki67 immunostaining in breast cancer and hormone sensitivity. Eur J Cancer 29 A:1018–1023.

    Article  Google Scholar 

  • Nicholson RI (1993) Recent advances in the antihormonal therapy of breast cancer. Curr Opin Invest Drugs 2:1259–1268.

    Google Scholar 

  • Nicholson RI, Gee JWM, Eaton CL, and 15 others (1994a) Pure antiestrogens in breast cancer: Experimental and clinical observations. I: Motta M, Serio M (eds) Sex Hormones and Antihormones in Endocrine Dependent Pathology: Basic and Clinical Aspects. Elsevier Science BV, pp 347-360.

    Google Scholar 

  • Nicholson RI, McClelland RA, Gee JM, Manning DL, Cannon P, Robertson JF, Ellis IO, Blarney RW (1994b) Transforming growth factor-alpha and endocrine sensitivity in breast cancer. Cancer Res 54:1684–1689.

    PubMed  CAS  Google Scholar 

  • Nicholson RI, McClelland RA, Gee JM, Manning DL, Cannon P, Robertson JF, Ellis IO, Blarney RW (1994c) Epidermal growth factor receptor expression in breast cancer: association with response to endocrine therapy. Breast Cancer Res Treat 29:117–125.

    Article  PubMed  CAS  Google Scholar 

  • Nicholson RI, Gee JWM, Francis AB, Manning DL, Wakeling AE, Katzenellenbogen BS (1995) Observations arising from the use of pure antiestrogens on estrogenresponsive (MCF-7) and estrogen growth-independent (K3) human breast cancer cells. Endocrine Related Cancer 2:115–121.

    Article  CAS  Google Scholar 

  • Nicholson RI, Gee JWM (1996) Growth factors and modulation of endocrine response in breast cancer. In: Vedeckis WV (ed) Hormones and Cancer. Birkhäuser, Boston, pp 227–261.

    Google Scholar 

  • Noguchi S, Motomura K, Inaji H, Imaoka S, Koyama H (1993) Downregulation of transforming growth factor alpha by tamoxifen in human breast cancer. Cancer 72:131–136.

    Article  PubMed  CAS  Google Scholar 

  • O’Brian CA, Liskamp RM, Solomon DH Weinstein IB (1985) Inhibition of protein kinase C by tamoxifen. Cancer Res 45:2462–2465.

    PubMed  Google Scholar 

  • Paech K, Webb P, Kuiper GG, Nilsson S, Gustafsson J, Kushner PJ, Scanlan TS (1997) Differential ligand activation of estrogen receptors ERalpha and ERbeta at API sites. Science 277(5331):1508–1510.

    Article  PubMed  CAS  Google Scholar 

  • Palkowitz AD, Glasebrook AL, Thrasher KJ, Hauser KL, Short LL, Phillips DL, Muehl BS, Sato M, Shetler PK, Cullinan GJ, Pell TR, Bryant HU (1997) Discovery and synthesis of [6-hydroxy-3-[4-[2-(1-piperidinyl)ethoxy]phenoxy]-2-(4-hydroxy-phenyl)]benzo[b]thiophene: a novel, highly potent, selective estrogen receptor modulator. J Med Chem 40:1407–1416.

    Article  PubMed  CAS  Google Scholar 

  • Pham TA, Hwung YP, Santiso-Mere D, McDonnell DP, O’Malley BW (1992) Liganddependent and-independent function of the transactivation regions of the human estrogen receptor in yeast. Mol Endocrinol 6:1043–1050.

    Article  PubMed  CAS  Google Scholar 

  • Piantelli M, Maggiano N, Ricci R, Larocca LM, Capelli A, Scambia G, Isola G, Natali PG, Ranelletti FO (1995) Tamoxifen and quercetin interact with Type II estrogen binding sites and inhibit the growth of human melanoma cells. J Invest Dermatol 105:248–253.

    Article  PubMed  CAS  Google Scholar 

  • Pietras RJ, Arboleda J, Reese DM, Wongvipat N, Pegram MD, Ramos L, Gorman CM, Parker MG, Sliwkowski MX, Slamon DJ (1995) HER-2 tyrosine kinase pathway targets estrogen receptor and promotes hormone-independent growth in human-breast cancer cells. Oncogene 10(12):2435–2446.

    PubMed  CAS  Google Scholar 

  • Pink JJ, Jordan VC (1996) Models of estrogen receptor regulation by estrogens and antiestrogens in breast cancer cell lines. Cancer Res 56:2321–2330.

    PubMed  CAS  Google Scholar 

  • Ponglikitmongkol M, White JH, Chambon P (1990) Synergistic activation of transcription by the human estrogen receptor bound to tandem responsive elements. EMBO J 9(7):2221–2231.

    PubMed  CAS  Google Scholar 

  • Powles TJ (1997) Efficacy of tamoxifen as treatment of breast cancer. Seminars in Oncol 24: S148–S154.

    Google Scholar 

  • Ray P, Ghosh SK, Zhang DH, Ray A (1997) Repression of interleukin-6 gene expression by 17beta-estradiol: inhibition of the DNA-binding activity of the transcription factors NF-IL6 and NF-kappa B by the estrogen receptor. FEBS Lett 409(1):79–85.

    Article  PubMed  CAS  Google Scholar 

  • Reddel RR, Sutherland RL (1984) Tamoxifen stimulation of human breast cancer cellproliferation in vitro: a possible model for tamoxifen tumour flare. Eur J Cancer Clin Oncol 20(11):1419–1424.

    Article  PubMed  CAS  Google Scholar 

  • Robertson JF (1996) Estrogen receptor: a stable phenotype in breast cancer. Br J Cancer 73:5–12.

    Article  PubMed  CAS  Google Scholar 

  • Rochefort H (1995) Estrogen-and anti-estrogen-regulated genes in human breast cancer. Ciba Found Symp 191:254–265.

    PubMed  CAS  Google Scholar 

  • Segnitz B, Gehring U (1995) Subunit structure of the nonactivated human estrogen receptor. Proc Natl Acad Sci USA 92(6):2179–2183.

    Article  PubMed  CAS  Google Scholar 

  • Sharma HW, Narayanan R (1996) The NF-kappaB transcription factor in oncogenesis. Anticancer Res 16(2):589–596.

    PubMed  CAS  Google Scholar 

  • Sivaraman VS, Wang H, Nuovo GJ, Malbon CC (1997) Hyperexpression of mitogenactivated protein kinase in human breast cancer. J Clin Invest 99:1478–1483.

    Article  PubMed  CAS  Google Scholar 

  • Smith CL, Conneely OM, O’Malley BW (1993) Modulation of the ligand-independent activation of the human estrogen receptor by hormone and antihormone. Proc Natl Acad Sci USA 90(13):6120–6124.

    Article  PubMed  CAS  Google Scholar 

  • Smith CL, Nawaz Z, O’Malley BW (1997) Coactivator and corepressor regulation of the agonist/antagonist activity of the mixed antiestrogen,4-hydroxytamoxifen. Mol Endocrinol 11(6):657–666.

    Article  PubMed  CAS  Google Scholar 

  • Sutherland RL, Murphy LC, Foo MS, Green MD, Whybourne AM (1980) High-affinity antiestrogen binding site distinct from the estrogen receptor. Nature 288:273–275.

    Article  PubMed  CAS  Google Scholar 

  • Toko T, Sugimoto Y, Matsuo K, Yamasaki R, Takeda S, Wierzba K, Asao T, Yamada Y (1990) TAT-59, a new triphenylethylene derivative with antitumor activity against hormone-dependent tumors. Eur J Cancer 26:397–404.

    Article  PubMed  CAS  Google Scholar 

  • Tong W, Perkins R, Xing L, Welsh WJ, Sheehan DM (1997) QSAR models for binding of estrogenic compounds to estrogen receptor alpha and beta subtypes. Endocrinology 138(9):4022–4025.

    Article  PubMed  CAS  Google Scholar 

  • Tora L, White J, Brou C, Tasset D, Webster N, Scheer E, Chambon P (1989) The human estrogen receptor has two independent nonacidic transcriptional activation functions. Cell 59(3):477–487.

    Article  PubMed  CAS  Google Scholar 

  • Tremblay GB, Tremblay A, Copeland NG, Gilbert DJ, Jenkins NA, Labrie F, Giguere V (1997) Cloning, chromosomal localization, and functional analysis of the murine estrogen receptor beta. Mol Endocrinol Mar;11(3):353–365.

    Article  Google Scholar 

  • Tremblay A, Tremblay GB, Labrie C, Labrie F, Giguere V (1998) EM-800, a novel antiestrogen, acts as a pure antagonist of the transcriptional functions of estrogen receptors alpha and beta. Endocrinology. 139:111–118.

    Article  PubMed  CAS  Google Scholar 

  • Trowbridge JM, Rogatsky I, Garabedian MJ (1997) Regulation of estrogen receptor transcriptional enhancement by the cyclin A/Cdk2 complex. Proc Natl Acad Sci USA 94(19):10132–10137.

    Article  PubMed  CAS  Google Scholar 

  • Tzeng DZ, Klinge CM (1996) Phosphorylation of purified estradiol-liganded estrogen receptor by casein kinase II increases estrogen response element binding but does not alter ligand stability. Biochem Biophys Res Commun Jun 25;223(3):554–560.

    Article  Google Scholar 

  • Tzukerman MT, Esty A, Santiso-Mere D, Danielian P, Parker MG, Stein RB, Pike JW, McDonnell DP (1994) Human estrogen receptor transactivational capacity is determined by both cellular and promoter context and mediated by two functionally distinct intramolecular regions. Mol Endocrinol 8(1):21–30.

    Article  PubMed  CAS  Google Scholar 

  • Van de Velde P, Nique F, Bouchoux F, Bremaud J, Hameau MC, Lucas D, Moratille C, Viet S, Philibert D, Teutsch G (1994) RU 58,668, a new pure antiestrogen inducing a regression of human mammary carcinoma implanted in nude mice. J Steroid Biochem Mol Biol 48:187–196.

    Article  PubMed  Google Scholar 

  • Verbeek BS, Vroom TM, Adriaansen-Slot SS, Ottenhoff-Kalff AE, Geertzema JG, Hennipman A, Rijksen G (1996) c-Src protein expression is increased in human breast cancer. An immunohistochemical and biochemical analysis. J Pathol 180:383–388.

    Article  PubMed  CAS  Google Scholar 

  • Wakeling AE (1993) The future of new pure antiestrogens in clinical breast cancer. Breast Cancer Res Treat 25:1–9.

    Article  PubMed  CAS  Google Scholar 

  • Weatherill PJ, Wilson AP, Nicholson RI, Davies P, Wakeling AE (1988) Interaction of the antiestrogen ICI 164,384 with the estrogen receptor. J Steroid Biochem 30(1–6):263–266.

    Article  PubMed  CAS  Google Scholar 

  • Webb P, Lopez GN, Uht RM, Kushner PJ (1995) Tamoxifen activation of the estrogen receptor/AP-1 pathway: potential origin for the cell-specific estrogen-like effects of antiestrogens. Mol Endocrinol 9(4):443–456.

    Article  PubMed  CAS  Google Scholar 

  • Willsher PC, Gee JWM, Nicholson RI, Blarney RW and Robertson JF Changes in estrogen receptor and estrogen regulated gene expression in primary breast cancer during long-term tamoxifen therapy. Br J Cancer (Submitted).

    Google Scholar 

  • Wilson AP, Weatherill PJ, Nicholson RI, Davies P, Wakeling AE (1990) A comparative study of the interaction of oestradiol and the steroidal pure antiestrogen, ICI 164, 384, with the molybdate-stabilized estrogen receptor. J Steroid Biochem 35(3–4):421–428.

    Article  PubMed  CAS  Google Scholar 

  • Wogan GN (1997) Review of the toxicology of tamoxifen. Seminars in Oncol 24:S187–S197.

    Google Scholar 

  • Wrenn CK, Katzenellenbogen BS (1990) Cross-linking of estrogen receptor to chromatin in intact MCF-7 human breast cancer cells: optimization and effect of ligand. Mol Endocrinol 4(11):1647–1654.

    Article  PubMed  CAS  Google Scholar 

  • Yang NN, Venugopalan M, Hardikar S, Glasebrook A (1996) Identification of an estrogen response element activated by metabolites of 17beta-estradiol and raloxifene. Science 273(5279):1222–1225.

    Article  PubMed  CAS  Google Scholar 

  • Zhang QX, Borg A, Wolf DM, Oesterreich S, Fuqua SA (1997) An estrogen receptor mutant with strong hormone-independent activity from a metastatic breast cancer. Cancer Res 57(7):1244–1249.

    PubMed  CAS  Google Scholar 

  • Zwijsen RM, Wientjens E, Klompmaker R, van der Sman J, Bernards R, Michalides RJ (1997) CDK-independent activation of estrogen receptor by cyclin D1. Cell 88(3):405–415.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Seery, L.T., Gee, J.M.W., Dewhurst, O.L., Nicholson, R.I. (1999). Molecular Mechanisms of Antiestrogen Action. In: Oettel, M., Schillinger, E. (eds) Estrogens and Antiestrogens I. Handbook of Experimental Pharmacology, vol 135 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58616-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58616-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63667-7

  • Online ISBN: 978-3-642-58616-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics