Skip to main content

Cold-adapted microorganisms for use in food biotechnology

  • Chapter
Book cover Biotechnological Applications of Cold-Adapted Organisms

Abstract

Within the field of food biotechnology, microorganisms have been well utilized as bioreactors and source mechanisms for such useful biosubstances as enzymes, antibiotics, organic and amino acids, vitamins, and so on.1,2 Most microorganisms thus applied have been mesophilic. Recently, the utilization of thermophilic organisms has increased because of their thermostable characteristics. However, the utilization of cold-adapted microorganisms in food biotechnology has been very limited.3–5

Corresponding author

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams MWW, Perler FB, Kelly RM. Extremozymes: expanding the limits of biocatalysis. Bio/Technology 1995; 13:662–668.

    Article  CAS  Google Scholar 

  2. Burgess K, Shaw M. The application of enzymes in industry. Ind Enzymol 1983:260–283.

    Google Scholar 

  3. Brenchley JE. Psychrophilic microorganisms and their cold-active enzymes. J Ind Microbiol 1996; 17:432–437.

    Article  CAS  Google Scholar 

  4. Herbert RA. A perspective on the biotechnological potential of extremophiles. Trends Biotechnol 1992; 10:395–402.

    Article  CAS  Google Scholar 

  5. Gounot AM. Bacterial life at low temperature: physiological aspects and biotechnological implications. J Appl Bacteriol 1991; 71:386–397.

    Article  CAS  Google Scholar 

  6. Arpigny JL, Feller G, Gerday C. Cloning, sequence and structural features of a lipase from the Antarctic facultative psychrophile Psychrobacter immobilis B10. Biochim Biophys Acta 1993; 1171:331–333.

    Article  CAS  Google Scholar 

  7. Feller G, Thiry M, Arpigny JL, Mergeay M, Gerday C. Lipases from psychrotrophic Antarctic bacteria. FEMS Microbiol Lett 1990; 66:239–244.

    Article  CAS  Google Scholar 

  8. Schirmer F, Margesin R, P,mpel T. Extracellular protease-producing psychrotrophic bacteria from high alpine habitats. Arctic Alpine Res 1992; 24:88–92.

    Article  Google Scholar 

  9. Margesin R. Schinner F. Characterization of a metalloprotease from psychrophilic Xanthomonas maltophilia. FEMS Microbiol Lett 1991; 79:257–262.

    Article  CAS  Google Scholar 

  10. Gügi B, Orange N, Hellio F, Burini JF, Guillou C, Leriche F, Guespin-Michel JF. Effect of growth temperature on several exported enzyme activities in the psychrotrophic bacterium Pseudomonas fluorescens. J Bacteriol 1991; 173:3814–3820.

    Google Scholar 

  11. Trimbur DE, Gutshall KR, Prema P, Brenchley JE. Characterization of a psychrotrophic Arthrobacter gene and its cold-active (3-galactosidase. Appl Environ Microbiol 1994; 60:4544–4552.

    CAS  Google Scholar 

  12. Loveland J, Gutshall K, Kasmir J, Prema P, Brenchley JE. Characterization of psychrotrophic microorganisms producing (3-galactosidase activities. Appl Environ Microbiol 1994; 60:12–18.

    CAS  Google Scholar 

  13. Kobori H, Sullivan CW, Shizuya H. Heat-labile alkaline phosphatase from Antarctic bacteria: rapid 5’ end-labeling of nucleic acids. Proc Natl Acad Sci USA 1984; 81:6691–6695.

    Article  CAS  Google Scholar 

  14. Rentier-Delrue F, Mande SC, Moyens S, Mainfroid PTV, Goraj K, Lion M, Hol WGJ, Martial JA. Cloning and overexpression of the triosephosphate isomerase genes from psychrophilic and thermophilic bacteria. J Mol Biol 1993; 229:85–93.

    Article  CAS  Google Scholar 

  15. Feller G, Lonhienne T, Deroanne C, Libioulle C, Beeumen JV, Gerday C. Purification, characterization, and nucleotide sequence of the thermolabile a-amylase from the Antarctic psychrotroph Alteromonas haloplanctis A23. J Biol Chem 1992; 267:5217–5221.

    CAS  Google Scholar 

  16. Tan S, Apenten RKO, Knapp J. Low temperature organic phase biocatalysis using cold-adapted lipase from psychrotrophic Pseudomonas P38. Food Chem 1996; 57:415–418.

    Article  CAS  Google Scholar 

  17. Ogata K, Kato N, Ohsugi M, Tochikura T. Studies on the low temperature fermentation, Part II. Amino acid formation by facultative psychrophilic bacterium. Agric Biol Chem 1969; 33:711–717.

    Article  CAS  Google Scholar 

  18. Faulkner DJ. Antibiotics from marine organisms. In: Sammes P, ed. Topics in Antibiotic Chemistry, vol. 2. Chichester: E. Horwood, 1978:13–58.

    Google Scholar 

  19. Ogata K, Yoshida N, Ohsugi M, Tani Y. Studies on antibiotics produced by psychrophilic microorganisms, Part I. Production of antibiotics by a psychrophile, Streptomyces sp. No. 81. Agric Biol Chem 1971; 35:79–85.

    Article  CAS  Google Scholar 

  20. Fusetani N, Ejima D, Matsunaga S, Hashimoto K, Itagaki K, Akagi Y, Taga N, Suzuki K. 3Amino-3-deoxy-D-glucose: an antibiotic produced by a deep-sea bacterium. Experientia 1987; 43:464–471.

    Article  CAS  Google Scholar 

  21. Okami Y. Potential use of marine microorganisms for antibiotics and enzyme production. Pure Appl Chem 1982; 54:1951–1962.

    Article  CAS  Google Scholar 

  22. Wright S, Burton JL. Oral evening-primrose-seed oil improves atopic eczema. Lancet 1982; 2:1120–1122.

    Article  CAS  Google Scholar 

  23. Dyerberg J. Linolenate-derived polyunsaturated fatty acids and prevention of artherosclerosis. Nutr Rev 1986; 44:125–134.

    Article  CAS  Google Scholar 

  24. Harris WS. Fish oil, plasma lipids and lipoprotein metabolism in humans: a critical review. J Lipid Res 1989; 30:785–807.

    CAS  Google Scholar 

  25. Radwan SS. Sources of C20-polyunsaturated fatty acids for biotechnological use. Appl Microbiol Biotechnol 1991; 35:421–430.

    Article  CAS  Google Scholar 

  26. Uauy-Dagach R, Valenzuela A. Marine oils as a source of omega-3 fatty acids in the diet: how to optimize the health benefits. Proc Natl Acad Sci 1992; 16:199–243.

    CAS  Google Scholar 

  27. Wolf BR, Kleiman R, England RE. New source of y-linolenic acid (Boraginaceae, Scrophulariaceae, Onagraceae, Saxifragaceae). J Am Oil Chem Soc 1983; 60:1858–1860.

    Article  CAS  Google Scholar 

  28. Ackman RG. Marine Biogenic Lipids, Fats and Oils, vols. I and II. Florida: CRC Press Inc., 1989.

    Google Scholar 

  29. Chan M, Himes RH, Akagi JM. Fatty acid composition of thermophilic, mesophilic, and psychrophilic Clostridia. J Bacteriol 1971; 106:876–881.

    CAS  Google Scholar 

  30. Nagy G, Kerekes R. Fatty acid composition of mesophilic and psychrophilic Pseudomonas species. Zbl Bakt II Abt 1980; 135:533–540.

    CAS  Google Scholar 

  31. DeLong EF, Yayanos AA. Biochemical function and ecological significance of novel bacterial lipids in deep-sea procaryotes. Appl Environ Microbiol 1986; 51:730–737.

    CAS  Google Scholar 

  32. Hamamoto T, Takada N, Kudo T, Horikoshi K. Characteristic presence of polyunsaturated fatty acids in marine psychrophilic vibrios. FEMS Microbiol Lett 1995; 129:51–56.

    CAS  Google Scholar 

  33. Seto A, Wong HL, Hesseltine CW. Culture conditions: effect on eicosapentaenoic acid content of Chlorella minutissima. J Am Oil Chem Soc 1984; 61:892–894.

    Article  CAS  Google Scholar 

  34. Yongmanitchai W, Ward OP. Screening of algae for potential alternative sources of eicosapentaenoic acid. Phytochemistry 1991; 30:2963–2967.

    Article  CAS  Google Scholar 

  35. Cohen Z. The production potential of eicosapentaenoic acid and arachidonic acid of the red algae Porphyridium cruentum. J Am Oil Chem Soc 1990; 67:916–920.

    Article  CAS  Google Scholar 

  36. Cohen Z, Didi S, Heimer YM. Overproduction of y-linolenic and eicosapentaenoic acids by algae. Plant Physiol 1992; 98:569–572.

    Article  CAS  Google Scholar 

  37. Cohen Z, Vonshak A, Richmond A. Fatty acid composition of Spirulina strains grown under various environmental conditions. Phytochemistry 1987; 26:2255–2258.

    Article  CAS  Google Scholar 

  38. Okuyama H, Morita N, Kogame K. Occurrence of octadecapentaenoic acid in lipids of a cold stenothermic alga, prymnesiophyte strain B. J Phycol 1992; 28:465–472.

    Article  CAS  Google Scholar 

  39. Nagashima H, Matsumoto GI, Ohtani S, Momose H. Temperature acclimation and the fatty acid composition of an Antarctic green alga Chlorella. Proc NIPR Symp Polar Biol 1995; 8:194–199.

    Google Scholar 

  40. Nakahara T. Production of oil containing y-linolenic acid. Nippon Nogeikagaku kaishi 1995; 69:708–710 (in Japanese).

    CAS  Google Scholar 

  41. Hiruta O, Kamisaka Y, Yokochi T, Futamura T, Takebe H, Satoh A, Nakahara T, Suzuki O. y-Linolenic acid production by a low temperature-resistant mutant of Mortierella ramanniana. J Ferment Bioeng 1996; 82:119–123.

    Article  CAS  Google Scholar 

  42. Shinmen Y, Shimizu S, Akimoto K, Kawashima H, Yamada H. Production of arachidonic acid by Mortierella fungi: selection of a potent producer and optimization of culture conditions for large-scale production. Appl Microbiol Biotechnol 1989; 31:11–16.

    Article  CAS  Google Scholar 

  43. Akimoto K. A use development of single cell oils. Nippon Nogeikagaku kaishi 1995; 69:729–733 (in Japanese).

    Google Scholar 

  44. Shimizu S, Shinmen Y, Kawashima H, Akimoto K, Yamada H. Fungal mycelia as a novel source of eicosapentaenoic acid. Biochem Biophys Res Corn 1988; 150:335–341.

    Article  CAS  Google Scholar 

  45. Shimizu S, Kawashima H, Shinmen Y, Akimoto K, Yamada H. Production of eicosapentaenoic acid by Mortierella fungi. J Am Oil Chem Soc 1988; 65:1455–1459.

    Article  CAS  Google Scholar 

  46. Shimizu S, Kawashima H, Akimoto K, Shinmen Y, Yamada H. Microbial conversion of an oil containing ct-linolenic acid to an oil containing eicosapentaenoic acid. J Am Oil Chem Soc 1989; 66:342–347.

    Article  CAS  Google Scholar 

  47. Shimizu S, Kawashima H, Akimoto K, Shinmen Y, Yamada H. Conversion of linseed oil to an eicosapentaenoic acid-containing oil by Mortierella alpina at low temperature. Appl Microbiol Biotechnol 1989; 32:1–4.

    Article  CAS  Google Scholar 

  48. Jareonkitmongkol S, Kawashima H, Shirakawa N, Shimizu S, Yamada H. Production of dihomo y-linolenic acid by a 45-desaturase-defective mutant of Mortierella alpina 1S-4. Appl Environ Microbiol 1992; 58:2196–2200.

    CAS  Google Scholar 

  49. Jareonkitmongkol S, Sakuradani E, Shimizu S A novel A5-desaturase-defective mutant of Mortierella alpina 1S-4 and its dihomo-y-linolenic acid productivity. Appl Environ Microbiol 1993; 59:4300–4304.

    CAS  Google Scholar 

  50. Shimizu S, Akimoto K, Kawashima H, Shinmen Y, Yamada H. Production of dihomo-ylinolenic acid by Mortierella alpina 1S-4. J Am Oil Chem Soc 1989; 66:237–241.

    Article  CAS  Google Scholar 

  51. Shimizu S, Akimoto K, Shinmen Y, Kawashima H, Sugano M, Yamada H. Sesamin is a potent and specific inhibitor of 45-desaturase in polyunsaturated fatty acid biosynthesis. Lipids 1991; 26:512–516.

    Article  CAS  Google Scholar 

  52. Li ZY, Ward OP. Production of docosahexaenoic acid by Thraustochytrium roseum. J Ind Microbiol 1994; 13:238–241.

    Article  CAS  Google Scholar 

  53. Nakahara T, Yokochi T, Higashihara T, Tanaka S, Yaguchi T, Honda D. Production of docosapentaenoic and docosahexaenoic acids by Schizochytrium sp. isolated from Yap islands. J Am Oil Chem Soc 1996; 73:1421–1426.

    Article  CAS  Google Scholar 

  54. Yazawa K, Araki K, Okazaki N, Watanabe K, Ishikawa C, Inoue A, Numao N, Kondo K. Production of eicosapentaenoic acid by marine bacteria. J Biochem 1988; 103:5–7.

    CAS  Google Scholar 

  55. Ringo E, Sinclair PD, Birkbeck H, Barbour A. Production of eicosapentaenoic acid (20:5 n-3) by Vibrio pelagius isolated from turbot (Scophthalmus maximus (L.)) larvae. Appl Environ Microbiol 1992; 58:3777–3778.

    CAS  Google Scholar 

  56. Yano Y, Nakayama A, Saito H, Ishihara K. Production of docosahexaenoic acid by marine bacteria isolated from deep sea fish. Lipids 1994; 29:527–528.

    Article  CAS  Google Scholar 

  57. Iwatani H, Yamaguchi T, Takeuchi M. Fatty acid metabolism in bacteria that produce eicosapentaenoic acid isolated from sea urchin Strongylocentrotus nudus. Nippon Suisan Gakkaishi 1995; 61:205–210 (in Japanese).

    Google Scholar 

  58. Jostensen JP, Landfald B. Influence of growth conditions on fatty acid composition of a polyunsaturated-fatty-acid-producing Vibrio species. Arch Microbiol 1996; 165:306–310.

    Article  Google Scholar 

  59. Jostensen J-P, Landfald B. High prevalence of polyunsaturated-fatty-acid-producing bacteria in arctic invertebrates. FEMS Microbiol Lett 1997; 151:95–101.

    Article  CAS  Google Scholar 

  60. Yano Y, Nakayama A, Yoshida K. Distribution of polyunsaturated fatty acids in bacteria present in intestines of deep-sea fish and shallow-sea poikilothermic animals. Appl Environ Microbiol 1997; 63:2572–2577.

    CAS  Google Scholar 

  61. Watanabe K, Ishikawa C, Ohtsuka, I, Kamata M, Tomita M, Yazawa K, Muramatsu H. Lipid and fatty acid compositions of a novel docosahexaenoic acid-producing marine bacterium. Lipids 1997; 32:975–978.

    Article  CAS  Google Scholar 

  62. Oliver JD, Colwell RR. Extractable lipids of gram-negative marine bacteria: fatty-acid composition. Int J Syst Bacteriol 1973; 23:442–458.

    Article  CAS  Google Scholar 

  63. John RB, Perry GJ. Lipids of the marine bacterium Flexibacter polymorphus. Arch Microbiol 1977; 114:267–271.

    Article  Google Scholar 

  64. Wirsen CO, Jannasch HW, Wakeham SG, Canuel EA. Membrane lipids of a psychrophilic and barophilic deep-sea bacterium. Curr Microbiol 1987; 14:319–322.

    Article  CAS  Google Scholar 

  65. Nichols DS, Nichols PD, McMeekin TA. Anaerobic production of polyunsaturated fatty acids by Shewanella putrefaciens strain ACAM 342. FEMS Microbiol Lett 1992; 98:117–122.

    Article  CAS  Google Scholar 

  66. Ringo E, Jostensen JP, Olsen RE. Production of eicosapentaenoic acid by freshwater Vibrio. Lipids 1992; 27:564–566.

    Article  Google Scholar 

  67. Nichols DS, Nichols PD, McMeekin TA. Polyunsaturated fatty acids from Antarctic bacteria. Antarct Sci 1993; 5:149–160.

    Google Scholar 

  68. Henderson RJ, Millar RM, Sargent JR, Jostensen JP. Trans-monoenoic and polyunsaturated fatty acids in phospholipids of a Vibrio species of bacterium in relation to growth temperature. Lipids 1993; 28:389–396.

    Article  CAS  Google Scholar 

  69. Hamamoto T, Tanaka N, Kudo T, Horikoshi K. Effect of temperature and growth phase on fatty acid composition of the psychrophilic Vibrio sp. strain no. 5710. FEMS Microbiol Lett 1994; 119:77–82.

    Article  CAS  Google Scholar 

  70. Bowman JP, McCammon SA, Nichols DS, Skerratt JH, Rea SM, Nichols PD, McMeekin TA. Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov., novel Antarctic species with the ability to produce eicosapentaenoic acid (20:5œ3) and grow anaerobically by dissimilatory Fe(III) reduction. Int J Syst Bacteriol 1997; 47:1040–1047.

    Article  CAS  Google Scholar 

  71. Nichols DS, Brown JL, Nichols PD, McMeekin TA. Production of eicosapentaenoic and arachidonic acids by an Antarctic bacterium: response to growth temperature. FEMS Microbiol Lett 1997; 152:349–354.

    Article  CAS  Google Scholar 

  72. Yazawa K. Production of eicosapentaenoic acid from marine bacterium. Lipids 1996; 31 Suppl: S297–S300.

    Article  CAS  Google Scholar 

  73. Alvarez HM, Mayer F, Fabritius D, Steinb,chel A. Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch Microbiol 1996; 165: 377–386.

    Article  CAS  Google Scholar 

  74. Takeyama H, Takeda D, Yazawa K, Yamada A, Matsunaga T. Expression of the eicosapentaenoic acid synthesis gene cluster from Shewanella sp. in a transgenic marine cyanobacterium, Synechococcus sp. Microbiology 1997; 143: 2725–2731.

    Article  CAS  Google Scholar 

  75. Takano H, Takeyama H, Nakamura N, Soda K, Burgess JG, Manabe E, Mirano M, Matsunaga T. CO removal by high density culture of a marine cyanobacterium Synechococcus sp. using an improved photobioreacter employing light-diffusing optical fibers. Appl Biochem Biotechnol 1992; 34/35: 449–458.

    Article  Google Scholar 

  76. Bakoyianis V, Kanellaki M, Kaliafas A, Koutinas AA. Low-temperature wine making by immobilized cells on mineral kissiris. J Agric Food Chem 1992; 40:1293–1296.

    Article  CAS  Google Scholar 

  77. Konishi Y, Tochikura K, Ogata K. Nitrite forming bacteria in Yamahaimoto (I). Isolation of specific bacteria. J Ferment Technol 1967; 45:795–802 (in Japanese).

    Google Scholar 

  78. Konishi Y, Tochikura K, Ogata K. Nitrite forming bacteria in Yamahaimoto (II). Selective medium for nitrite forming bacteria in Yamahaimoto. J Ferment Technol 1967; 45:803–808 (in Japanese).

    Google Scholar 

  79. Konishi Y, Tochikura K, Ogata K. Nitrite forming bacteria in Yamahaimoto (III). The change of microflora by increment of sugar concentration. J Ferment Technol 1967; 45:809–814 (in Japanese).

    Google Scholar 

  80. Molimard P, Spinnler HE. Compounds involved in the flavor of surface mold-ripened cheeses: origins and properties. J Dairy Sci 1996; 79:169–184.

    Article  CAS  Google Scholar 

  81. Litopoulou-Tzanetaki E, Tzanetakis N. Microbiological study of white-brined cheese made from raw goat milk. Food Microbiol 1992; 9:13–19.

    Article  Google Scholar 

  82. Roostita R, Fleet GH. The occurrence and growth of yeasts in Camembert and blue-veined cheeses. Int J Food Microbiol 1996; 28:393–404.

    Article  CAS  Google Scholar 

  83. Sablé S, Portrait V, Gautier V, Letellier F, Cottenceau G. Microbiological changes in a soft raw goat’s milk cheese during ripening. Enzyme Microb Technol 1997; 21:212–220.

    Article  Google Scholar 

  84. Samelis J, Maurogenakis F, Metaxopoulos J. Characterization of lactic acid bacteria isolated from naturally fermented Greek dry salami Int J Food Microbiol 1994; 23:179–196.

    Article  CAS  Google Scholar 

  85. Haga S, Kato T, Kotuka K. Effects of curing and fermenting time on the quality of hams fermented with psychrotrophic lactic acid bacteria. Nippon Shokuhin Kogyo Gakkaishi 1994; 41:797–802 (in Japanese).

    Google Scholar 

  86. Maki LR, Galyan EL, Chang-Chien MM, Caldwell DR. Ice nucleation induced by Pseudomonas syringae. Appl Microbiol 1974; 28:456–460.

    CAS  Google Scholar 

  87. Lindow SE, Arny DC, Upper CD. Distribution of ice nucleation-active bacteria on plants in nature. Appl Environ Microbiol 1978; 36:831–838.

    CAS  Google Scholar 

  88. Zhao JL, Orser CS. Conserved repetition in the ice nucleation gene inaX from Xanthomonas campestris pv. translucens. Mol Gen Genet 1990; 223:163–166.

    Article  CAS  Google Scholar 

  89. Watanabe M, Watanabe J, Makino T, Honma K, Kumeno K, Arai S. Isolation and cultivation of a novel ice nucleation-active strain of Xanthomonas campestris. Biosci Biotech Biochem 1993; 57:994–995.

    Article  CAS  Google Scholar 

  90. Honma K, Makino T, Kumeno K, Watanabe M. High-pressure sterilization of ice nucleation-active Xanthomonas campestris and its application to egg process. Biosci Biotech Biochem 1993; 57:1091–1094.

    Article  CAS  Google Scholar 

  91. Watanabe M, Arai S. Freezing of water in the presence of the ice nucleation active bacterium, Erwinia ananas, and its application for efficient freeze-drying of foods. Agric Biol Chem 1987; 51:557–563.

    Article  CAS  Google Scholar 

  92. Watanabe M, Tesaki S, Arai S. Production of low-salt soy sauce with enriched flavor by freeze concentration using bacterial ice nucleation activity. Biosci Biotech Biochem 1996; 60:1519–1521.

    Article  CAS  Google Scholar 

  93. Watanabe M, Watanabe J, Kumeno K, Nakahama N, Arai, S. Freeze concentration of some foodstuffs using ice nucleation-active bacterial cells entrapped in calcium alginate gel. Agric Biol Chem 1989; 53:2731–2735.

    Article  CAS  Google Scholar 

  94. Watanabe M, Arai E, Kumeno K, Honma K. A new method for producing a non-heated jam sample: the use of freeze concentration and high-pressure sterilization. Agric Biol Chem 1991; 55:2175–2176.

    Article  CAS  Google Scholar 

  95. Caridis KA, Christakopoulos P, Macris BJ. Control of catalase production and purity by altering nutritional factors of Alternaria alternata growth medium. Biotechnol Lett 1991; 13:35–38.

    Article  CAS  Google Scholar 

  96. Caridis K-A, Christopoulos P, Macris B. Simultaneous production of glucose oxidase and catalase by Alternaria alternata. J Appl Microbiol Biotechnol 1991; 34:794–797.

    CAS  Google Scholar 

  97. Nishikawa Y, Kawata Y, Nagai J. Effect of Triton X-100 on catalase production by Aspergillus terreus IE06123. J Ferment Bioeng 1993; 76:235–236.

    Article  CAS  Google Scholar 

  98. Petruccioli M, Fenice M, Piccioni P, Federici E Effect of stirrer speed and buffering agents on the production of glucose oxidase and catalase by Penicillium variable (P16) in bench top bioreactor. Enzyme Microb Technol 1995; 17:336–339.

    Article  CAS  Google Scholar 

  99. Fiedureck J, Gromada A. Selection of biochemical mutants of Aspergillus niger with enhanced catalase production. Appl Microbiol Biotechnol 1997; 47:313–316.

    Article  Google Scholar 

  100. Yumoto I, Yamazaki K, Kawasaki K, Ichise N, Morita N, Hoshino T, Okuyama H. Isolation of Vibrio sp. S-1 exhibiting extraordinarily high catalase activity. J Ferment Bioeng 1998; 85:113–116.

    Article  CAS  Google Scholar 

  101. Fredrickson, AG, Stephanopoulos G. Microbial competition. Science 1981; 213:972–979.

    Article  CAS  Google Scholar 

  102. Reddy MC, Bills DD, Lindsay RC. Ester production by Pseudomonas fragi. II Factors influencing ester levels in milk cultures. Appl Microbiol 1969; 17:779–782.

    CAS  Google Scholar 

  103. Pittard BT, Freeman LR, Later DW, Lee, ML. Identification of volatile organic compounds produced by fluorescent pseudomonads on chicken breast muscle. Appl Environ Microbiol 1982; 43:1504–1506.

    CAS  Google Scholar 

  104. Edwards RA, Dainty RH, Hibbard CM. Volatile compounds produced by meat pseudo-monads and related reference strains during growth on beef stored in air and chill temperatures. J Appl Bacteriol 1987; 62:403–412.

    Article  CAS  Google Scholar 

  105. Miller A III, Scanlan RA, Lee JS, Libbey LM. Volatile compounds produced in sterile fish muscle (Sebastes melanops) by Pseudomonas putrefaciens, Pseudomonas fluorescens,and Achromobacter species. Appl Microbiol 1973; 26:18–21.

    CAS  Google Scholar 

  106. Gram L. Inhibitory effect against pathogenic and spoilage bacteria of Pseudo monas strains isolated from spoiled and fresh fish. Appl Environ Microbiol 1993; 59:2197–2203.

    CAS  Google Scholar 

  107. Henry MB, Lynch JM, Femor TR. Role of siderophores in the biocontrol of Pseudomonas tolaassi by fluorescent pseudomonad antagonist. J Appl Bacteriol 1991; 70:104–106.

    Article  CAS  Google Scholar 

  108. Neiland JB. Microbial iron compounds. Ann Rev Biochem 1981; 50:715–731.

    Article  Google Scholar 

  109. Golovacheva RS. Thermophilic nitrifying bacteria from hot springs. Microbiology 1976; 45:377–379.

    Google Scholar 

  110. Jones RD, Morita RY, Koops HP, Watson SW A new marine ammonia oxidizing bacterium Nitrosomonas cryotolerans. Can J Microbiol 1988; 34:122–128.

    Article  Google Scholar 

  111. Tokuyama T, Yoshida N, Matsuishi T, Takahashi N, Takahashi R, Kanehira T, Shinohara M. A new psychrotrophic ammonia-oxidizing bacterium, Nitrosovibrio sp. TYM9. J Ferment Bioeng 1997; 83:377–380.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Okuyama, H., Morita, N., Yumoto, I. (1999). Cold-adapted microorganisms for use in food biotechnology. In: Margesin, R., Schinner, F. (eds) Biotechnological Applications of Cold-Adapted Organisms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58607-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58607-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63663-9

  • Online ISBN: 978-3-642-58607-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics