Skip to main content

Peptide hydrolases from antarctic krill — an important new tool with a promising medical potential

  • Chapter
Biotechnological Applications of Cold-Adapted Organisms

Abstract

Krill, a group of reddish, thumb-length pelagic shrimp-like crustaceans which can reach a weight of about one gram, occupy a central position in the Southern Ocean food web.1 The predominant species in this unique ecosystem is antarctic krill, Euphausia superba, which is widely distributed in dense swarms and represents the largest source of unutilized protein in the oceans. The potential catch has been estimated to be well in excess of the total annual harvest of fish in the world, suggesting that the biomass of this single species is the largest of any multi-cellular animal on the planet.

Corresponding author

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Laws R. Antarctica: a convergence of life. New Sci 1983; 1373:608–616.

    Google Scholar 

  2. Nicol S. Who’s counting on krill? New Sci 1989; 1690:38–41.

    Google Scholar 

  3. Bucht A, Karlstam B. Isolation and immunological characterization of three highly purified serine proteinases from Antarctic krill (Euphausia superba). Polar Biol 1991; 11:495–500.

    Article  Google Scholar 

  4. Chen CS, Yan TR, Chen HY. Purification and properties of trypsin-like enzymes and a carboxypeptidase A from Euphausia superba. J Food Biochem 1978; 2:349–366.

    Article  Google Scholar 

  5. Chen CS, Gau SW. Polysaccharidase and glycosidase activities of Antarctic krill Euphausia superba. J Food Biochem 1981; 5:63–68.

    Article  CAS  Google Scholar 

  6. Chen CS, Lian KT. Purification and characterization of beta-D-glucosidases from Euphausia superba. Agric Biol Chem 1986; 50:1229–1238.

    Article  CAS  Google Scholar 

  7. Karlstam B, Lunglöf A. Purification and partial characterization of a novel hyaluronic acid-degrading enzyme from Antarctic krill (Euphausia superba). Polar Biol 1991; 11:501–507.

    Google Scholar 

  8. Kimoto K, Kusama S, Murakami K. Purification and characterization of serine proteinases from Euphausia superba. Agric Biol Chem 1983; 47:529–534.

    Article  CAS  Google Scholar 

  9. Kimoto K, Murakami K. Purification and characterization of aminopeptidase from Euphausia superba. Agric Biol Chem 1984; 48:1819–1823.

    Article  CAS  Google Scholar 

  10. Kimoto K, Yokoi T, Murakami K. Purification and characterization of chymotrypsin-like proteinase from Euphausia superba. Agric Biol Chem 1985; 49:1599–1603.

    Article  CAS  Google Scholar 

  11. Osnes KK, Mohr V. On the purification and characterization of three anionic, serine-type peptide hydrolases from Antarctic krill, Euphausia superba. Comp Biochem Physiol 1985; 82B:607–619.

    CAS  Google Scholar 

  12. Osnes KK, Mohr V. On the purification and characterization of exopeptidases from Antarctic krill, Euphausia superba. Comp Biochem Physiol 1986; 83B:445–458.

    CAS  Google Scholar 

  13. Spindler KD, Buchholz F. Partial characterization of chitin-degrading enzymes from two euphausiids, Euphausia superba and Meganyctiphanes norvegica. Polar Biol 1988; 9:115–122.

    Article  Google Scholar 

  14. Turkiewicz M, Galas E, Zielinska M. Purification and partial characterization of an endo(1,3)-beta-D-glucanase from Euphausia superba Dana (Antarctic krill). Polar Biol 1985; 4:203–211.

    Article  CAS  Google Scholar 

  15. Turkiewicz M, Galas E, Kalinowska H. Collagenolytic serine proteinase from Euphausia superba Dana (Antarctic krill). Comp Biochem Physiol 1991; 99B:359–371.

    CAS  Google Scholar 

  16. Ellingsen TE, Mohr V. Biochemistry of the autolysis process in Antarctic krill post mortem. Autoproteolysis. Biochem J 1987; 246:295–305.

    CAS  Google Scholar 

  17. Karlstam B, Vincent J, Johansson B, Brynö C. A simple purification method of squeezed krill for obtaining high levels of hydrolytic enzymes. Prep Biochem 1991; 21:237–256.

    Article  CAS  Google Scholar 

  18. Kolakowski E. Seasonal variation of autoproteolytic activity in the Antarctic krill, Euphausia superba Dana. Pol Polar Res 1986; 7:275–282.

    Google Scholar 

  19. Kolakowski E. Proteolytic activity of Antarctic krill in relation to its feeding intensity in spring and summer. Pol Polar Res 1989; 10:141–150.

    Google Scholar 

  20. Ellingsen TE. Biokjemiske studier over Antarktisk krill (Biochemical studies on Antarctic krill). PhD thesis, Inst Techn Biochem NTH/University of Trondheim, Trondheim Norway, 1982.

    Google Scholar 

  21. Kimoto K, Thanh V V, Murakami K. Acid proteinases from Antarctic krill, Euphausia superba. Partial purification and some properties. J Food Sci 1981; 46:1881–1884.

    Article  CAS  Google Scholar 

  22. Nishimura K, Kawamura Y, Matoba T, Yonezawa D. Classification of proteases in Antarctic krill. Agric Biol Chem 1983; 47:2577–2583.

    Article  CAS  Google Scholar 

  23. Noguchi A, Yanagimoto M, Umeda K, Kimura S. Purification and some properties of protease of Euphausia superba. J Agric Chem Soc Jpn 1976;50:415–421.

    CAS  Google Scholar 

  24. Osnes KK, Mohr V Peptide hydrolases of Antarctic krill Euphausia superba. Comp Biochem Physiol 1985; 82B:599–606.

    CAS  Google Scholar 

  25. Osnes KK, Ellingsen TE, Mohr V. Hydrolysis of proteins by peptide hydrolases of Antarctic krill, Euphausia superba. Comp Biochem Physiol 1986; 83B:801–805.

    CAS  Google Scholar 

  26. Seki N, Sakaya H, Onozawa T. Studies on proteases from Antarctic krill. Bull Jpn Soc Sci Fish 1977; 43:955–962.

    Article  CAS  Google Scholar 

  27. Karlstam B. Crossed immunoelectrophoretic analysis of proteins from Antarctic krill (Euphausia superba) with special reference to serine proteinases. Polar Biol 1991; 11:489–493.

    Google Scholar 

  28. Karlstam B, Johansson B, Brynö C. Identification of proteolytic isozymes from Antarctic krill (Euphausia superba) in an enzymatic debrider. Comp Biochem Physiol 1991; 100B:817–820.

    CAS  Google Scholar 

  29. Hellgren L, Vincent J. Debridement: an essential step in wound healing. In: Westerhof W, ed. Leg Ulcers: Diagnosis and Treatment. Amsterdam:Elsevier Science, 1993:305–312.

    Google Scholar 

  30. Anheller JE, Hellgren L, Karlstam B, Vincent J. Biochemical and biological profile of a new enzyme preparation from Antarctic krill (Euphausia superba) suitable for debridement of ulcerative lesions. Arch Dermatol Res 1989; 281:105–110.

    Article  CAS  Google Scholar 

  31. Campbell D, Hellgren L, Karlstam B and Vincent J Debriding ability of a novel multi-enzyme preparation isolated from Antarctic krill (Euphausia superba). Experientia 1987; 43:578–579.

    Article  CAS  Google Scholar 

  32. Hellgren L, Mohr V, Vincent J. Proteases from Antarctic krill - a new system for effective enzymatic debridement of necrotic ulcerations. Experientia 1986; 42:403–404.

    Article  CAS  Google Scholar 

  33. Hellgren L, Karlstam B, Mohr V, Vincent J. Krill enzymes: A new concept for efficient debridement of necrotic ulcers. Int J Dermatol 1991; 30:102–103.

    Article  CAS  Google Scholar 

  34. Mekkes JR, Le Poole IC, Das PK, Kammeyer A, Westerhof W In vitro tissue-digesting properties of krill enzymes compared with fibrinolysin/DNAse, papain and placebo. Int J Biochem Cell Biol 1997; 29:703–706.

    Article  CAS  Google Scholar 

  35. Hellgren L, Vincent J. Débriding properties of krill enzymes in necrotic leg ulcers. Arch Dermatol 1989; 125:1006.

    Article  CAS  Google Scholar 

  36. Westerhof W, van Ginkel CJW, Cohen EB, Mekkes JR. Prospective randomized study comparing the débriding effect of krill enzymes and non-enzymatic treatment in venous leg ulcers. Dermatologica 1990; 181:293–297.

    Article  CAS  Google Scholar 

  37. Vanscheidt W, Weiss JM. Types of enzymes on the market. In: Westerhof W, Vanscheidt W, eds. Proteolytic Enzymes and Wound Healing. Amsterdam:Elsevier Science, 1994:59–73.

    Chapter  Google Scholar 

  38. Hull PS. Chemical inhibition of plaque. J Clin Periodontol 1980; 7:431–442.

    Article  CAS  Google Scholar 

  39. Marsh PD. The significance of maintaining the stability of the natural microflora of the mouth. Br Dent J 1991; 21:174–177.

    Article  Google Scholar 

  40. Hellgren K, Hellgren L, Mohr V, Vincent J. Composition for dental use comprising krill enzyme. PCT patent WO 95/33470, 1995.

    Google Scholar 

  41. Hellgren L, Mohr V, Vincent J Enzyme composition acting as a digestion promoter on various levels in the alimentary tract, and a method for facilitating digestion. US patent 4.695.457, 1987.

    Google Scholar 

  42. Frymoyer JW. Back pain and sciatica. N Engl J Med 1988; 318:291–300.

    Article  CAS  Google Scholar 

  43. Kato F, Mimatsu K, Kawakami N, Iwata H, Miura T. Serial changes observed by magnetic resonance imaging in the intervertebral disc after chemonucleolysis: a consideration of the mechanism of chemonucleolysis. Spine 1991; 17:934–939.

    Article  Google Scholar 

  44. Nachemson AL, Rydevik B. Chemonucleolysis for sciatica. A critical review. Acta Orthop Scand 1988; 59:56–62.

    Article  CAS  Google Scholar 

  45. Dabezies EJ, Langford K, Morris J, Shields CB, Wilkinson HA. Safety and effficacy of chymopapain (Discase) in the treatment of sciatica due to a herniated nucleus pulposus. Results of a randomized, double-blind study. Spine 1988; 13:561–565.

    CAS  Google Scholar 

  46. Garvin PJ. Toxicity of collagenase, the realtion to enzyme therapy of disc herniation. Clin Orthop 1974; 101:286.

    CAS  Google Scholar 

  47. Artigas J, Brock M, Mayer HM. Complications following chemonucleolysis with collagenase. J Neurosurg 1984; 61:679.

    Article  CAS  Google Scholar 

  48. Melrose J, Hall A, Macpherson C, Bellenger CR, Ghosh P. Evaluation of digestive proteinases from the Antarctic krill (Euphausia superba) as potential chemonucleolytic agents. In vitro and in vivo studies. Arch Orthop Trauma Surg 1995; 114:145–152.

    Article  CAS  Google Scholar 

  49. Sasahara AA, Loscalzo J. New Therapeutic Agents in Thrombosis and Thrombolysis. New York: M Dekker, 1997.

    Google Scholar 

  50. Hellgren L, Mohr V, Vincent J, Vincent J, Karlstam B. Intravasal thrombolysis. PCT patent WO 95/33471, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hellgren, L., Karlstam, B., Mohr, V., Vincent, J. (1999). Peptide hydrolases from antarctic krill — an important new tool with a promising medical potential. In: Margesin, R., Schinner, F. (eds) Biotechnological Applications of Cold-Adapted Organisms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58607-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58607-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63663-9

  • Online ISBN: 978-3-642-58607-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics