Skip to main content

Low temperature organic phase biocatalysis using cold-adapted enzymes

  • Chapter
Biotechnological Applications of Cold-Adapted Organisms

Abstract

Enzymes from ectothermic organisms are adapted to function within specific niches in the environment. There seems to be parity in respect of conformational stability, flexibility and activity for enzymes at the growth temperature for the source organisms.1 This makes cold-adapted enzymes particularly suited for catalysis at low temperatures. Organic phase biocatalysis (OPB) refers to the performance of enzymatic reactions in media comprising wholly or partly of organic solvents. This approach extends the well-known advantages of enzymatic catalysis (e.g., high specificity and catalytic efficiency, mild reaction conditions) to reactions involving water insoluble substrates. Replacing an aqueous reaction medium with an organic solvent allows novel reactions, e.g. reverse hydrolysis and transesterification, to be carried out. OPB grew rapidly in the mid-1980’s with applications of enzymes, whole cells and tissues, as biocatalysts in water-organic solvent phase systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Somero GN. Proteins and temperature. Ann Rev Physiol 1995; 57:43–68.

    Article  CAS  Google Scholar 

  2. Tan S, Apenten RKO, Knapp J. Low temperature organic phase biocatalysis using cold-adapted lipase from psychrotrophic Pseudomonas P38. Food Chemistry 1996; 57:415–418.

    Article  CAS  Google Scholar 

  3. Kunugi S, Koyasu A, Takahashi S, Oda K. Peptide condensation activity of a neutral protease from Vibro sp. T1800 (Vimelysin). Biotechnol Bioeng 1997; 53:386–390.

    Article  Google Scholar 

  4. Cerrea G. Biocatalysis in water-organic solvent 2-phase systems. Trends Biotechnol 1984; 2:102–106.

    Article  Google Scholar 

  5. Inada Y, Takahashi K, Yoshimoto T, Ajima A, Matsushima A, Saito Y. Trends Biotechnol 1986; 4:190–194.

    Article  CAS  Google Scholar 

  6. Carrea G, Cremonesi P. Enzyme catalysed steroid transformation in water organic solvent 2-phase systems. Methods Enzymol 1987; 136:150–157.

    Article  CAS  Google Scholar 

  7. Mattiasson B, Aldercreutz P. Tailoring the microenvironment of enzymes in water-poor systems. Trends Biotechnol 1991; 9:394–398.

    Article  CAS  Google Scholar 

  8. Cowan, DA, Plant AR. Biocatalysis in organic media. ACS Symp Ser 1992; 498:86–207.

    Article  CAS  Google Scholar 

  9. Hailing PJ. Thermodynamic predictions for biocatalysis in nonconventional media-theory, tests, and recommendations for experimental design and analysis. Enzyme Microbiol Technol 1994; 16:178–206.

    Article  Google Scholar 

  10. Wescott CR, Klibanov AM. The solvent dependence of enzyme specificity. Biochim Biophys Acta-Protein Str Mol Enzymol 1994; 1206:1–9.

    Article  CAS  Google Scholar 

  11. Kvittingen L. Some aspects of biocatalysis in organic-solvents. Tetrahedron 1994; 50:8253–8274.

    Article  CAS  Google Scholar 

  12. Lortie R. Enzyme catalysed esterification. Biotechnol Adv 1997; 15:1–15.

    Article  CAS  Google Scholar 

  13. Fernandez-Mayoralas A. Synthesis and modification of carbohydrates using glucosidases and lipases. Topics Curr Chem 1991; 186:1–20.

    Article  Google Scholar 

  14. Reetz MT. Entrapment of biocatalysts in hydrophobic sol-gel materials for use in organic chemistry. Advance Material 1997; 9:943.

    Article  CAS  Google Scholar 

  15. Mabrouk PA. The use of poly(ethylene glycol) enzymes in nonaqueous enzymology. ACS Symp Ser 1997; 680:118–113.

    Article  CAS  Google Scholar 

  16. Douzou P. Aqueous-organic solutions of enzymes at sub-zero temperatures. Biochimie 1971; 53:1135–1145.

    Article  CAS  Google Scholar 

  17. Fink AL. Cryoenzymology: The use of sub-zero temperatures and fluid solutions in the study of enzyme mechanisms. J Theor Biol 1976; 61:419–445.

    Article  CAS  Google Scholar 

  18. Makinen MW. Reactivity and cryoenzymology of enzymes in the crystalline state. Ann Rev Biophys Bioeng 1977; 6:301–343.

    Article  CAS  Google Scholar 

  19. Fink AL, Geeves MA. Cryoenzymology: The study of enzyme catalysis at subzero temperatures. Methods Enzymol 1979; 63:336–370.

    Article  CAS  Google Scholar 

  20. Douzou P. Cryoenzymology in aqueous media. Adv Enzymol 1980; 51:1–74.

    CAS  Google Scholar 

  21. Fink AL, Petsko GA. X-ray cryoenzymology. Adv Enzymol 1981; 52:177–246.

    CAS  Google Scholar 

  22. Singer SJ. The properties of proteins in nonaqueous solvents. Adv Protein Chem 1962; 17:1–68.

    Article  CAS  Google Scholar 

  23. Franks F, Eagland D. The role of solvent intractions in protein conformation. CRC Crit Rev Biochem 1975; 3:165–219.

    Article  CAS  Google Scholar 

  24. Douzou P, Hoa HBP, Maurel P, Travers E Physical chemical data for mixed solvents used in low temperature biochemistry. In Faman ED, ed. Handbook of Biochemistry and Molecular Biology. 3rd ed. Cleveland:CRC Press, 1976:520–539.

    Google Scholar 

  25. Akerlof G. Dielectric constants of some organic solvent-water mixtures at various temperatures. J Am Chem Soc 1932; 54:4125–4139.

    Article  CAS  Google Scholar 

  26. Aten WC. Solvent action and measurement. In Whim BP, Johnson PG, eds. Directory of Solvents. London:Blakie Academic & Professionals, 1996:11–47.

    Google Scholar 

  27. Schrier EE, Scheraga HA. The effect of aqueous alcohol solutions on the thermal transition of ribonuclease. Biochim Biophys Acta 1962; 64:406–408.

    Article  CAS  Google Scholar 

  28. Schrier, EE, Ingwall RT, Scheraga HA. The effect of aqueous alcohol solutions on the thermal transition of ribonuclease. J Phys Chem 1965; 69:298–303.

    Article  CAS  Google Scholar 

  29. Herkovits JT, Gadegbuku B, Jaillet H. Structural stability and solvent denaturation of proteins. Denaturation by alcohols and glycols. J Biol Chem 1970; 245:2588–2598.

    Google Scholar 

  30. Parodi RM, Bianchi E, Ciferri A. Thermodynamics of unfolding of lysozyme in aqueous alcohol solutions. J Biol Chem 1973; 248:4047–4051.

    CAS  Google Scholar 

  31. Owusu RK, Cowan DA. Thermostable microbial protein stability in aqueous: organic two solvent phase systems. Biochem Soc Trans 1989; 17:581–582.

    CAS  Google Scholar 

  32. Owusu RK, Cowan DA. A correlation between microbial protein thermostability and resistance to denaturation in aqueous-organic solvent two phase systems. Enzyme Microbiol Technol 1989; 11:468–474.

    Article  Google Scholar 

  33. Zaks A, Klibanov AM. Enzymatic catalysis in organic media at 100°C. Science 1984; 224:1249–1251.

    Article  CAS  Google Scholar 

  34. Slade L, Levine H. Beyond water activity: Recent advances based on an alternative approach to the assesment of food quality and safety. Crit Rev Food Sci Nutr 1991; 30:115–360.

    Article  CAS  Google Scholar 

  35. Rupley JA, Careri G. Protein hydration and function. Adv Protein Chem 1991; 41:37–142.

    Article  CAS  Google Scholar 

  36. Johnston DS, Castelli E The influence of sugars on the properties of freeze-dried lysozyme and heamoglobin. Thermochim Acta 1989; 144:195–208.

    Article  CAS  Google Scholar 

  37. Brandts JF, Hunt L. Thermodynamics of protein denaturation. III. The denaturation of ribonuclease in water and in aqueous urea and aqueous ethanol mixtures. J Am Chem Soc 1967; 89:4826–4838.

    Article  CAS  Google Scholar 

  38. Fujita Y, Miyanaga A, Noda Y. Effect of alcohols on the thermal denaturation of lysozyme as measured by differential Scanning calorimetry. Bull Chem Soc Jpn 1979; 52:3659–3662.

    Article  CAS  Google Scholar 

  39. Fujita Y, Izumiguchi S, Noda Y. Effec of dimethylsulfoxide and its homologues on the thermal denaturation of lysozyme as measured by differential scanning calorimetry. Int J Peptide Protein Res 1982; 19:25–31.

    Article  CAS  Google Scholar 

  40. Fugita Y, Noda Y. The effect of organic solvents in the thermal denaturation of lysozyme as measured by differential scanning calorimetry. Bull Chem Soc Jpn 1983; 56:233–237.

    Article  Google Scholar 

  41. Fink AL, Painter B. Characterization of the unfolding of ribonuclease A in aqueous methanol solvents. Biochemistry 1987; 26:1665–1671.

    Article  CAS  Google Scholar 

  42. Velicelebi G, Sturtevant JM. Thermodynamics of the denaturation of lysozyme in alcohol-water mixtures. Biochemistry 1979; 18:1180–1186.

    Article  CAS  Google Scholar 

  43. Jacobson AL, Turner CL. Specific solvent effects on the thermal denaturation of ribonuclease. Effect of dimethyl sulfoxide and p-dioxane on thermodynamics of denaturation. Biochemistry 1980; 19:4534–4538.

    Article  CAS  Google Scholar 

  44. Fu L, Freire E. On the origin of the enthalpy and entropy convergence temperatures in protein folding. Proc Natl Acad Sci USA 1992; 89:9335–9338.

    Article  CAS  Google Scholar 

  45. Creighton TE. Proteins: Structure and Molecular Properties. New York: WH Freeman & Co, 1984.

    Google Scholar 

  46. Privalov P, Gill SJ. Stability of protein structure and hydrophobic interaction. Adv Protein Chem 1988; 39:191–233.

    Article  CAS  Google Scholar 

  47. Franks E Protein destabilization at low temperatures. Adv Protein Chem 1995; 46:105–139.

    Article  CAS  Google Scholar 

  48. Madan B, Sharp K. Heat capacity changes accompanying hydrophobic and ionic solvation. A Monte Carlo and random network study. J Phys Chem 1996; 100:7713–7721.

    Article  CAS  Google Scholar 

  49. Madan B, Sharp K. Molecular origin of hydration heat capacity changes of hydrophobic solutes: Perturbation of water structure around alkanes. J Phys Chem B. 1997; 101:11237–11242.

    Article  CAS  Google Scholar 

  50. Livingtone JR, Spolar RS, Record MT. Contribution to the thermodynamics of protein folding from the reduction in the water-assessible nonpolar surface area. Biochemistry 1991; 30:4237–4244.

    Article  Google Scholar 

  51. Luisi PL, Henninger F, Joppich M, Dossena A, Casnati G. Solubilization and spectroscopic properties of a-chymotrypsin in cyclohexane. Biochem Biophys Res Comm 1977; 74:1384–1389.

    Article  CAS  Google Scholar 

  52. Wolf R, Luissi PL. Micellar solubilization of enzymes in hydrocarbon solvents. Enzymatic activity and spectroscopic properties of ribonuclease in n-octane. Biochem Biophys Res Comm 1979; 89:209–217.

    Article  CAS  Google Scholar 

  53. Barbaric S, Luisi PL. Micellar solubilization of biopolymers in organic solvents 5. Activity and conformation of a-chymotrypsin in isooctane-AOT reverse micelles. J Am Chem Soc 1981; 103:4239–4244.

    Article  CAS  Google Scholar 

  54. Larsson KM, Pileni MP. Interactions of native and modified cytochrome-C with a negatively charged reverse micella liquid interface. Eur Biophys J 1993; 21:409–416.

    Article  CAS  Google Scholar 

  55. Haber J, Maslakiewica P, Rodakiewicznwak J, Walde P. Activity and spectroscopic properties of bovine liver catalase in sodium bis (2-ethylhexyl)sulfosuccinate isooctane reverse micelles. Eur J Biochem 1993: 217:567–573.

    Article  CAS  Google Scholar 

  56. Shasty MCR, Eftink MR. Reversible thermal unfolding of ribonuclease T-1 in reverse micelles. Biochemistry 1996; 35:4094–4101.

    Article  Google Scholar 

  57. Laidler KJ, Peterman BF. Temperature effects in enzyme kinetics. Methods Enzymol 1979; 63:234–257.

    Article  CAS  Google Scholar 

  58. Fruton JS. Proteinase-catalysed synthesis of peptide bonds. Adv Enzymol 1982; 53:239–306.

    CAS  Google Scholar 

  59. Morihara K. Using proteases in pepride synthesis. Trends Biotechnol 1987; 5:164–170.

    Article  CAS  Google Scholar 

  60. Jonsson A, Aldercrueutz A, Mattiasson B. Effects of subzero temperatures on the kinetics of protease catalysed dipeptide synthesis in organic media. Biotechnol Bioeng 1995; 46:429–436.

    Article  CAS  Google Scholar 

  61. Jonsson A, Sehtje E, Aldercreutz P, Mattiasson B. Temperature effects on protease catalysed acyl transfer reactions in organic media. J Molecular Catalysis B-Enzym 1996; 2:43–51.

    Article  Google Scholar 

  62. Tonga V, Meos H, Hoga M, Aaviksaar A, Jakubke H-D. Peptide synthesis by chymotrypsin in frozen solutions. Febs Letts 1993; 329:40–42.

    Article  Google Scholar 

  63. Jakubke HD, Eichhorn U, Hansler M, Ullmann D. Nonconventional enzyme catalysis: Applicatons of proteases and zymogens in biotransformations. Biol Chem 1996; 377:455–464.

    CAS  Google Scholar 

  64. Haensler M, Jakubke HD. Reverse action of hydrolases in frozen aqeous-solutions. Amino Acids 1996; 11:379–395.

    Article  CAS  Google Scholar 

  65. Haensler M, Gerisch S, Rettelbush J, Jakubke HD. Application of immobilized alpha-chymotrypsin to peptide synthesis in frozen ageous systems. J Chem Technol Biotechnol 1997; 68:202–208.

    Article  CAS  Google Scholar 

  66. Haensler M, Wehofsky N, Gerisch S, Wissmann JD, Jakubke HD. Reverse catalysis of elastase from procine pancrease in frozen aqueous systems. Biol Chem 1998; 379:71–74.

    CAS  Google Scholar 

  67. Herbert RA. A perspective on the biotechnological potential of extremophiles. Trends Biotechnol 1992; 10:395–402.

    Article  CAS  Google Scholar 

  68. Teocjgraber P, Xache J, Knorr D. Enzymes from germinating seeds-potential applications in food processing. Trends Food Sci 1993; 4:145–149.

    Article  Google Scholar 

  69. Margesin R, Schinner E Properties of cold-adapted microorganisms and their potential role in biotechnology. J Biotechnol 1994; 33:1–14.

    Article  CAS  Google Scholar 

  70. Feller G, Narinz E, Arpigny JL, Aittaleb M, Baise E, Genicot S, Gerday C. Enymes from psychrophilic organisms. FEMS Microbiol Rev 1996; 18:189–202.

    Article  CAS  Google Scholar 

  71. Brenchley JE. Psychrotrophic microorganisms and their cold-active enzymes. J Ind Microbiol Biotechnol 1996;17:432–437.

    Article  CAS  Google Scholar 

  72. Feller G, Gerday C. Psychrophilic enzymes: molecular basis for cold adaptation. CMLS Cell Mol Life Sci 1997; 53:830–841.

    Article  CAS  Google Scholar 

  73. Marshall CJ. Cold-adapted enzymes. Trends Biotechnol 1997; 15:358–364.

    Article  Google Scholar 

  74. Klibanov AM. Why are enzymes less active in organic solvents than water. Trends Biotechnol 1997; 15:97–100.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Apenten, R.K.O. (1999). Low temperature organic phase biocatalysis using cold-adapted enzymes. In: Margesin, R., Schinner, F. (eds) Biotechnological Applications of Cold-Adapted Organisms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58607-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58607-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63663-9

  • Online ISBN: 978-3-642-58607-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics