Skip to main content

Metabolic Disturbances and Gene Responses Following Cortical Injury in Rats: Relationship to Spreading Depression

  • Conference paper
Maturation Phenomenon in Cerebral Ischemia III

Summary

The effects of a cortex lesion on alterations in cortical direct-current (DC) potential, cerebral metabolism and gene expression were examined in rats at 1–6 h after transcranial cold injury. In 14 of 21 injured rats, spreading depression (SD)-like depolarizations were recorded, which were accompanied by a transient decrease in electroencephalogram activity and a parallel increase in perfusion. Metabolic disturbances did not differ between injured animals with and without SD. The lesion surrounding was characterized by increased glucose and lactate contents without major disturbances of protein synthesis or energy state. A transient peri-focal decrease in tissue pH by 0.4 units was noticed after 1 h, followed by tissue alkalosis 3 h post-injury. In injured animals without SD, a short-lasting expression of immediate-early gene (IEG) mRNAs was found in piriform cortex, in the dentate gyrus and hippocampal CA3/CA4 subfields at 1 h after lesioning. In injured animals with SDs, a strong elevation of IEGs was seen additionally in layers II-IV and VI of the injury-remote ipsilateral cerebral cortex, which persisted for as long as 6 h. The mRNA levels for c-fos, junB and mitogen-activated protein kinase phosphatase (MKP)-1 were closely related to the time interval between the last DC deflection and the termination of the experiment, yielding a post-depolarization decline with half-lives of 48, 75, and 58 min for c-fos, junB and MKP-1, respectively. The results of the present study demonstrate that SD is a prominent factor influencing trauma-related gene responses in the lesion-remote cerebral cortex. In contrast to focal cerebral ischemia, however, SDs do not aggravate the metabolic dysfunction in the area surrounding the lesion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Oka H, Kako M, Matsushima M, Ando K (1977) Traumatic spreading depression syndrome. Review of a particular type of head injury in 37 patients. Brain 100: 287–298

    Article  PubMed  CAS  Google Scholar 

  2. Lauritzen M (1987) Cortical spreading depression as a putative migrain mechanism. Trends Neurosci 10: 8–13

    Article  Google Scholar 

  3. Barkley GL, Tepley N, Nagel-Leiby S, Moran JE, Simkins RT, Welch KM (1990) Magnetoencephalographic studies of migraine. Headache 30: 428–434

    Article  PubMed  CAS  Google Scholar 

  4. Nicoli F, Milandre L, Lemarquis P, Bazan M, Jau P (1990) Chronic subdural hematoma and transient neurologic deficits. Rev Neural 146: 256–263

    CAS  Google Scholar 

  5. Mayevsky A, Doron A, Manor T, Meilin S, Zarchin N, Ouaknine GE (1996) Cortical spreading depression recorded from the human brain using a multiparametric monitoring system. Brain Res 740: 268–274

    Article  PubMed  CAS  Google Scholar 

  6. Nedergaard M, Hansen AJ (1988) Spreading depression is not associated with neuronal injury in the normal brain. Brain Res 449: 395–398

    Article  PubMed  CAS  Google Scholar 

  7. Kocher M (1990) Metabolic and hemodynamic activation of postischemic rat brain by cortical spreading depression. J Cereb Blood Flow Metab 10: 564–571

    Article  PubMed  CAS  Google Scholar 

  8. Back T, Kohno K, Hossmann K-A (1994) Cortical negative DC deflections following middle cerebral artery occlusion and KCl-induced spreading depression: effect on blood flow, tissue oxygenation, and electroencephalogram. J Cereb Blood Flow Metab 14: 12–19

    Article  PubMed  CAS  Google Scholar 

  9. Kawahara N, Croll SD, Wiegand SJ, Klatxo I (1997) Cortical spreading depression induces long-term alterations of BDNF levels in cortex and hippocampus distinct from lesion effects: implications for ischemic tolerance. Neurosci Res 29: 37–47

    Article  PubMed  CAS  Google Scholar 

  10. Hossmann K-A (1996) Periinfarct depolarizations. Cereb Brain Metab Rev 8: 195–208

    CAS  Google Scholar 

  11. Dietrich WD, Alonso D, Busto R, Prado R, Dewanjee MK, Ginsberg MD (1996) Widespread hemodynamic depression and focal platelet accumulation after fluid percussion brain injury: a double-label autoradiographic study in rats. J Cereb Blood Flow Metab 16: 481–489

    Article  PubMed  CAS  Google Scholar 

  12. Ginsberg MD, Zhao W, Alonso OF, Loor-Estades JY, Dietrich WD, Busto R (1997) Uncoupling of local cerebral glucose metabolism and blood flow after acute fluid-percussion injury in rats. Am J Physiol 272: H2859 - H2868

    PubMed  CAS  Google Scholar 

  13. Siesjö BK, Katsura K-I, Kristián T (1996) Acidosis-related damage. Adv Neurol 71: 209–236

    PubMed  Google Scholar 

  14. Yang K, Mu XS, Xue JJ, Whitson J, Salminen A, Dixon CE, Liu PK, Hayes RL (1994) Increased expression of c-fos mRNA and AP-1 transcription factors after cortical impact injury in rats. Brain Res 664: 141–147

    Article  PubMed  CAS  Google Scholar 

  15. Raghupathi R, Welsh F, Lowenstein DH, Gennarelli TA, McIntosh TK (1995) Regional induction of c-fos and heat shock protein-72 mRNA following fluid-percussion brain injury in the rat. J Cereb Blood Flow Metab 15: 467–473

    Article  PubMed  CAS  Google Scholar 

  16. Mikawa S, Sharp FR, Kamii H, Kinouichi H, Epstein CJ, Chan PH (1995) Expression of c-fos and hsp70 mRNA after traumatic brain injury in transgenic mice overexpressing CuZn-superoside dismutase. Brain Res Mol Brain Res 33: 288–294

    Article  PubMed  CAS  Google Scholar 

  17. Mies G, Djuricic B, Paschen W, Hossmann KA (1997) Quantitative measurement of cerebral protein synthesis in vivo: theory and methodological considerations. J Neurosci Methods 76: 35–44

    Article  PubMed  CAS  Google Scholar 

  18. Lowry OH, Passonneau IV (1972) A flexible system of enzymatic analysis. Academic Press, New York

    Google Scholar 

  19. Csiba L, Paschen W, Hossmann K-A (1983) A topographic quantitative method for measuring brain tissue pH under physiological and pathophysiological conditions. Brain Res 289: 334–337

    Article  PubMed  CAS  Google Scholar 

  20. Kogure K, Alonso OF (1978) A pictorial representation of endogenous brain ATP by a bioluminescent method. Brain Res 154: 273–284

    Article  PubMed  CAS  Google Scholar 

  21. Paschen W, Mies G, Kloiber O, Hossmann K-A (1985) Regional quantitative determination of brain glucose in tissue sections: a bioluminescent approach. J Cereb Blood Flow Met ab 5: 465–468

    Article  CAS  Google Scholar 

  22. Paschen W (1985) Regional quantitative determination of lactate in brain sections: a bioluminescent approach. J Cereb Blood Flow Metab 5: 609–612

    Article  PubMed  CAS  Google Scholar 

  23. Mies G, Kohno K, Hossmann K-A (1993) MK-801, a glutamate antagonist, lowers threshold for inhibition of protein synthesis after middle cerebral artery occlusion of rat. Neurosci Lett 155: 65–68

    Article  PubMed  CAS  Google Scholar 

  24. Neumann-Haefelin T, Wiessner C, Vogel P, Back T, Hossmann K-A (1994) Differential expression of the immediate early genes c-fos, c-jun, junB, and NGFI-B in the rat brain following transient forebrain ischemia. J Cereb Blood Flow Metab 14: 206–216

    Article  PubMed  CAS  Google Scholar 

  25. Wiessner C, Neumann-Haefelin T, Vogel P, Back T, Hossmann K-A (1995) Transient forebrain ischemia induces an immediate-early gene encoding the mitogen-activated protein kinase phosphatase 3CH134 in the adult rat brain. Neuroscience 64: 959–966

    Article  PubMed  CAS  Google Scholar 

  26. Hermann DM, Mies G, Hossmann K-A (1998) Effects of a traumatic neocortical lesion on cerebral metabolism and gene expression of rats. Neuroreport 9: 1917–1921

    Article  PubMed  CAS  Google Scholar 

  27. Dhillon HS, Dose JM, Scheff SW, Renuka Prasad M (1997) Time course of changes in lactate and free fatty acids after experimental brain injury and relationship to morphologic damage. Exp Neurol 146: 240–249

    Article  PubMed  CAS  Google Scholar 

  28. Hovda DA, Becker DP, Katayama Y (1992) Secondary injury and acidosis. J Neurotrauma 9 [Suppl 1]: 47–60

    Google Scholar 

  29. Inao S, Marmarou A, Clarke GD, Andersen BJ, Fatouros PP, Young HF (1988) Production and clearance of lactate from brain tissue, cerebrospinal fluid, and serum following experimental brain injury. J Neurosurg 69: 736–744

    Article  PubMed  CAS  Google Scholar 

  30. Kawamata T, Katayama Y, Hovda DA, Yoshino A, Becker DP (1995) Lactate accumulation following concussive brain injury: the role of ionic fluxes induced by excitatory amino acids. Brain Res 674: 196–204

    Article  PubMed  CAS  Google Scholar 

  31. McIntosh TK, Faden AJ, Bendall MR, Vink R (1987) Traumatic brain injury in the rat: alterations in brain lactate and pH as characterized by 1H and 31P nuclear magnetic resonance. J Neurochem 49: 1530–1540

    Article  PubMed  CAS  Google Scholar 

  32. Renuka-Prasad M, Ramaiah C, McIntosh TK, Dempsey RJ, Hipkens S, Yurek D (1994) Regional levels of lactate and norepinephrine after experimental brain injury. J Neurochem 63: 1086–1094

    Article  Google Scholar 

  33. Mies G, Ishimaru S, Xie Y, Seo K, Hossmann K-A (1991) Ischemic thresholds of cerebral protein synthesis and energy state following middle cerebral artery occlusion in rat. J Cereb Blood Flow Metab 11: 753–761

    Article  PubMed  CAS  Google Scholar 

  34. Iijima T, Mies G, Hossmann K-A (1992) Repeated negative DC deflections in rat cortex following middle cerebral artery occlusion are abolished by MK-801: effect on volume of ischemic injury. J Cereb Blood Flow Metab 12: 727–733

    Article  PubMed  CAS  Google Scholar 

  35. Mies G, Iijima T, Hossmann K-A (1993) Correlation between peri-infarct DC shifts and ischaemic neuronal damage in rat. Neuroreport 4: 709–711

    Article  PubMed  CAS  Google Scholar 

  36. Wolf AL, Levi L, Marmarou A, Ward JD, Muizelaar P, Choi SC, Young H, Rigamonti D, Robinson WL (1993) Effect of THAM upon outcome in severe head injury: a randomized prospective clinical trial. J Neurosurg 78: 54–59

    Article  PubMed  CAS  Google Scholar 

  37. Marmarou A, Holdaway R, Ward JD, Yoshida K, Choi SC, Muizelaar JP (1993) Traumatic brain tissue acidosis: experimental and clinical studies. Acta Neurochir Suppl (Wien) 57: 160–164

    CAS  Google Scholar 

  38. Dragunow M, Preston K (1995) The role of inducible transcription factors in apoptotic nerve cell death. Brain Res Brain Res Rev 21: 1–28

    Article  PubMed  CAS  Google Scholar 

  39. Lau LF, Nathans D (1987) Expression of a set of growth-related immediate early genes in BALB/c 3T3 cells: coordinate regulation with c-fos or c-myc. Proc Natl Acad Sci U S A 84: 1182–1186

    Article  PubMed  CAS  Google Scholar 

  40. Edwards DR, Mahadevan LC (1992) Protein synthesis inhibitors differentially superinduce c-fos and c-jun by three distinct mechanisms: lack of evidence for labile respressors. EMBO J 11: 2415–2424

    PubMed  CAS  Google Scholar 

  41. Baskin DS, Zhang YJ, Widmayer MA (1948) C-fos antisense oligonucleotide administration prior to cerebrovascular occlusion exacerbates tissue damage. Stroke [Suppl] (in press)

    Google Scholar 

  42. Eriskat J, Schurer L, Kempski O, Baethmann A (1994) Growth kinetics of a primary brain tissue necrosis from a focal lesion. Acta Neurochir Suppl (Wien) 60: 425–427

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hermann, D.M., Mies, G., Hossmann, KA. (1999). Metabolic Disturbances and Gene Responses Following Cortical Injury in Rats: Relationship to Spreading Depression. In: Ito, U., Fieschi, C., Orzi, F., Kuroiwa, T., Klatzo, I. (eds) Maturation Phenomenon in Cerebral Ischemia III. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58602-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58602-6_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65023-2

  • Online ISBN: 978-3-642-58602-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics