Skip to main content

Detailed Simulations of Turbulent Flames Using Parallel Supercomputers

  • Conference paper

Abstract

Direct numerical simulations (DNS) have become one of the most effective tools to investigate turbulent combustion. To further improve our knowledge about the fundamental interaction processes between turbulent transport and chemical reactions using DNS, it is necessary to include detailed chemical reaction schemes. This leads to an enormous demand of computational power, which can only be provided by the fastest supercomputers available. Therefore, we developed a code for the direct simulation of chemically reacting flows on massively parallel computers. We utilize this code to investigate the interaction of H2/O2/N2 flames with decaying turbulence.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Warnatz, J., Maas, U., Dibble, R.W.: Combustion. Springer-Verlag, New York (1996)

    Book  Google Scholar 

  2. Bray, K.N.C.: The Challenge of Turbulent Combustion. Proc. 26th Symp. (Int.) on Combustion, The Combustion Institute, Pittsburgh (1996) 1–26

    Google Scholar 

  3. Poinsot, T.: Using Direct Numerical Simulations to Understand Premixed Turbulent Combustion. Proc. 26th Symp. (Int.) on Combustion, The Combustion Institute, Pittsburgh (1996) 219–232

    Google Scholar 

  4. Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena. John Wiley & Sons, New York (1960)

    Google Scholar 

  5. Warnatz, J., Riedel, U., Schmidt, R.: Different Levels of Air Dissociation Chemistry and Its Coupling with Flow Models, Advances in Hypersonics (Bertin, J.J., Periaux, J., Ballmann, J., Eds.), Birkhäuser, Boston (1992) 67–103

    Chapter  Google Scholar 

  6. Kee, R.J., Dixon-Lewis, G., Warnatz, J., Coltrin, M.E., Miller, J.A.: A Fortran Computer Code for the Evaluation of Gas-Phase Multicomponent Transport Properties. Sandia Report SAND86–8246 (1986)

    Google Scholar 

  7. Hirschfelder, J.O., Curtiss, C.F., Bird, R.B.: Molecular Theory of Gases and Liquids. John Wiley & Sons, New York (1954)

    MATH  Google Scholar 

  8. Maas, U., Pope, S.B.: Symplifying Chemical Kinetics: Intrinsic Low Dimensional Manifolds in Composition Space. Combustion and Flame 88 (1992) 239–264

    Article  Google Scholar 

  9. Choi, H., Moin, P.: Effects of the Computational Time-Step on Numerical Solutions of Turbulent Flow, J. Comput. Phys. 113 (1994) 1–4

    Article  MATH  Google Scholar 

  10. Thévenin, D., Behrendt, F., Maas, U., Przywara, B., Warnatz, J.: Development of a Parallel Direct Simulation Code to Investigate Reactive Flows. Computers and Fluids. Vol. 25, 5 (1996) 485–496

    Article  MATH  Google Scholar 

  11. Lange, M., Warnatz, J.: Direct Numerical Simulation of Chemically Reacting Flows. Supercomputer 1997 (Meuer, H.-W., Ed.), K.G.Saur-Verlag, München (1997) 145–156

    Google Scholar 

  12. Lange, M., Thévenin, D., Riedel, U., Warnatz, J.: Direct Numerical Simulation of Turbulent Reactive Flows Using Massively Parallel Computers. Parallel Computing: Fundamentals, Applications and New Directions (D’Hollander, E., Joubert, G., Peters, F., Trottenberg, U., Eds.), Elsevier Science, Amsterdam (1998)

    Google Scholar 

  13. Lesieur, M.: Turbulence in Fluids. Kluwer Academic, Dordrecht (1997)

    MATH  Google Scholar 

  14. Sloane, T. M., Ronney, P. D.: Comparison of Ignition Phenomena Modelled with Detailed and Simple Chemistry. Proc. Fourth International Conference on Numerical Combustion. SIAM, Saint Petersburg, Florida (1991)

    Google Scholar 

  15. Flatt, H.P., Kennedy, K.: Performance of Parallel Processors. Parallel Computing 12 (1989) 1–20

    Article  MathSciNet  MATH  Google Scholar 

  16. Dongarra, J.J., Meuer, H.-W., Strohmeier, E.: TOP500 Supercomputer Sites. University of Tennessee Computer Science Technical Report CS-97–377 (1997)

    Google Scholar 

  17. Lange, M., Riedel, U., Warnatz, J.: Parallel DNS of Turbulent Flames with Detailed Reaction Schemes. AIAA Paper 98–2979 (1998)

    Google Scholar 

  18. Lange, M., Riedel, U., Warnatz, J.: Direct Numerical Simulation of Turbulent Flames Using Detailed Chemistry, Verbrennung und Feuerungen, VDI-Berichte 1313 (1997) 431–436

    Google Scholar 

  19. Maas, U., Warnatz, J.: Ignition Processes in Hydrogen-Oxygen Mixtures. Combustion and Flame 74 (1988) 53–69

    Article  Google Scholar 

  20. Poinsot, T., Lele, S.: Boundary Conditions for Direct Simulations of Compressible Viscous Flows. J. Comput. Phys. 101 (1992) 104–129

    Article  MathSciNet  MATH  Google Scholar 

  21. Baum, M., Poinsot, T., Thévenin, D.: Accurate Boundary Conditions for Multicomponent Reactive Flows. J. Comput. Phys. 116 (1995) 247–261

    Article  MATH  Google Scholar 

  22. Seitzman, J.M., Ungüt, A., Paul, P.H., Hanson, R.K.: Imaging and Characterization of OH Structures in a Turbulent Nonpremixed Flame. Proc. 23rd Symp. (Int.) on Combustion, The Combustion Institute, Pittsburgh (1990) 637–644

    Google Scholar 

  23. Echekki, T., Chen, J.H., Gran, I.R.: The Mechanism of Mutual Flame Annihilation of Stoichiometric Premixed Methane-Air Flames. Proc. 26th Symp. (Int.) on Combustion, The Combustion Institute, Pittsburgh (1996) 855–864

    Google Scholar 

  24. Nguyen, Q.-V., Paul, P.H.: The Time Evolution of a Vortex-Flame Interaction Observed via Planar Imaging of CH and OH. Proc. 26th Symp. (Int.) on Combustion, The Combustion Institute, Pittsburgh (1996) 357–364

    Google Scholar 

  25. Baillot, F., Bourhela, A.: Burning Velocity of Pockets from a Vibrating Flame Experiment. Combust. Sci. and Tech. 126 (1997) 201–224

    Google Scholar 

  26. Peters, N.: Laminar Flamelet Concepts in Turbulent Combustion. Proc. 21st Symp. (Int.) on Combustion, The Combustion Institute, Pittsburgh (1986) 1231–1250

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lange, M., Warnatz, J. (1999). Detailed Simulations of Turbulent Flames Using Parallel Supercomputers. In: Krause, E., Jäger, W. (eds) High Performance Computing in Science and Engineering ’98. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58600-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58600-2_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63661-5

  • Online ISBN: 978-3-642-58600-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics