Skip to main content

High Performance Computing of Turbulent Flow in Complex Pipe Geometries

  • Conference paper
High Performance Computing in Science and Engineering ’98

Abstract

The numerical study of turbulent flow in pipes is important for fundamental research and allows to solve engineering problems, too. By the use of modern supercomputers the flow through complex pipe geometries can be predicted by the Direct Numerical Simulation method, where the Navier Stokes equations are solved directly and no modelling of turbulence is required. The flow in straight, toroidal and helically coiled pipes has been investigated for the same Reynolds number Re τ = u τ R/v = 230. The curvature k ranges from 0 to 0.1 and the torsion τ ranges from 0 to 0.165. The influence of curvature and torsion on turbulent pipe flow is shown by surface profiles of the axial velocity, the pressure and the intensity of the velocity components perpendicular to the axial velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ADLER, M. - Strömung in gekriimmten Rohren, Zeitschrift fiir angewandte Mathematik und Mechanik, 14: 257–275 (1934).

    Article  MATH  Google Scholar 

  2. BERGER, S.A., TALBOT, L. and YAO, L.-S. - Flow in curved pipes, Annual Review of Fluid Mechanics, 15, 461–512 (1983).

    Article  Google Scholar 

  3. BOERSMA, B.J. and NIEUWSTADT, F.T.M. - Large Eddy simulation of turbulent flow in a curved pipe, In: Tenth symposium on turbulent shear flows, The Pennsylvania State University, 1, Poster Session 1, PI-19 - P1–24 (1995).

    Google Scholar 

  4. BOERSMA, B.J. and NIEUWSTADT, F.T.M. - Large-Eddy Simulation of Turbulent Flow in a Curved Pipe, Transaction of the ASME, Journal of Fluids Engineering, vol. 118, pp. 248–254 (1996).

    Article  Google Scholar 

  5. BOERSMA, B.J. and NIEUWSTADT, F.T.M. - Non-Unique Solutions in Turbulent Curved Pipe Flow, In: J.-P. Chollet et al. (eds.), Direct and Large-Eddy Simulation II, Kluwer Academic Publishers, pp. 257–266, (1997).

    Google Scholar 

  6. BOERSMA, B.J. - Electromagnetic effects in cylindrical pipe flow, phd-thesis, Delft University Press, (1997).

    Google Scholar 

  7. DEAN, W. R. - Note on the Motion of Fluid in a Curved Pipe, Philosophical Magazine, Series 7, 4 (20) 208–223 (1927).

    MATH  Google Scholar 

  8. DEAN, W. R. - The Stream-line Motion of Fluid in a Curved Pipe, Philosophical Magazine, Series 7, 5 (30) 673–695 (1928).

    Google Scholar 

  9. EGGELS, J.G.M. - Direct and Large Eddy Simulation of Turbulent flow in a Cylindrical pipe geometry, PhD Thesis Delft University of Technology, Delft, The Netherlands (1994).

    Google Scholar 

  10. EGGELS, J.G.M., UNGER, F., WEISS, M.H., WESTERWEEL, J., ADRIAN, R.J., FRIEDRICH, R. and NIEUWSTADT, F.T.M. - Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment. J. Fluid Mech. 268, 175–209 (1994).

    Article  Google Scholar 

  11. EUSTICE, J. - Flow of Water in Curved Pipes, Proc. R. Soc. London Ser. A, 84: 107–118 (1910).

    Article  Google Scholar 

  12. EUSTICE, J. - Experiments on Stream-line Motion in Curved Pipes, Proc. R. Soc. London Ser. A, 85: 119–131 (1911).

    Article  Google Scholar 

  13. GERMANO, M. - On the effect of torsion on a helical pipe flow., J. Fluid Mech., vol. 125, pp. 1–8 (1982).

    Article  MATH  Google Scholar 

  14. GERMANO, M. - The Dean equations extended to a helical pipe flow., J. Fluid Mech., vol. 203, pp. 289–305 (1989).

    Article  MATH  Google Scholar 

  15. HÜTTL, T.J. and FRIEDRICH, R. - Numerische Simulation laminarer und turbulenter Strömungen in gekrümmten und tordierten Rohren - In: Overview of Research Projects on the Cray Y-MP at the Leibniz-Rechenzentrum München, LRZ-Bericht Nr. 9601, pp. 195–200.

    Google Scholar 

  16. HÜTTL, T.J. - Simulationsprogramm HELIX: Ein Finite-Volumen Verfahren zur Lösung der inkompressiblen 3D-Navier-Stokes Gleichungen für Rohrgeometrien mit Krümmung und Torsion, Lehrstuhl für Fluidmechanik, TU München, Bericht TUM-FLM-96/29 (1996).

    Google Scholar 

  17. HÜTTL, T.J. and FRIEDRICH, R. - Fully Developed Laminar Flow in Curved or Helically Coiled Pipes. -In: Jahrbuch 1997 der Deutschen Gesellschaft für Luft-und Raumfahrt - Lilientahl - Oberth e.V. (DGLR), Tagungsband “Deutscher Luft-u. Raumfahrtkongress 1997, DGLR-Jahrestagung, 14. - 17. Okt. in München”, Band 2, DGLR-JT97–181, pp. 1203–1210 (1997).

    Google Scholar 

  18. HUTTL, T.J., WAGNER, C. and FRIEDRICH, R. - Navier Stokes Solutions of Laminar Flows Based on Orthogonal Helical Coordinates -In: Numerical methods in laminar and turbulent flow, C. Taylor, J. Cross (eds.), Pineridge Press, Swansea UK, Vol. 10, pp. 191–202 (1997).

    Google Scholar 

  19. ITO, H. - Flow in Curved Pipes, JSME International Journal, 30 (262) 543–552 (1987).

    Article  Google Scholar 

  20. LIU, S. and MASLIYAH, J.H. - Axially invariant laminar flow in helical pipes with a finite pitch, J. Fluid Mech., 251: 315–353 (1993).

    Article  MATH  Google Scholar 

  21. UNGER, F. - Numerische Simulation turbulenter Rohrströmungen, phdthesis, Technische Univerität München (1994).

    Google Scholar 

  22. WAGNER, C. - Direkte numerische Simulation turbulenter Strömungen in einer Rohrerweiterung, PhD Thesis, Technische Univerität München (1995).

    Google Scholar 

  23. WANG, C.Y. - On the low-Reynolds-number flow in a helical pipe, J. Fluid Mech., vol. 108, pp. 185–194 (1981).

    Article  MATH  Google Scholar 

  24. WILLIAMS, G. S., HUBBELL, C. W. and FENKELL, G. H. - Experiments at Detroit, Mich., on the effect of curvature upon the flow of water in pipes, Trans. ASCE, 47:1–196 (1902).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hüttl, T.J., Friedrich, R. (1999). High Performance Computing of Turbulent Flow in Complex Pipe Geometries. In: Krause, E., Jäger, W. (eds) High Performance Computing in Science and Engineering ’98. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58600-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58600-2_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63661-5

  • Online ISBN: 978-3-642-58600-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics