Skip to main content

Roles of PAK Family Kinases

  • Chapter

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 22))

Abstract

The first identified protein kinase exhibiting direct activation by a Ras-related GTPase was a brain p21(Cdc42/Rac) activated kinase designated p65PAK(Manser et al 1994).The kinase(s) were originally identified in [γ32P]GTPCdc42 and [γ32P]GTP-Rac1 overlays of SDS-polyacrylamide gel fractionated brain proteins(Manser et al. 1993). The presence of similar sized target proteins in all tissues suggested that these serine/threonine protein kinases were ubiquitous. In binding the active GTP-forms of Cdc42 and Racl, the α-and γ-PAKs also decrease intrinsic GTP hydrolysis and block action of GTPase activating proteins (GAPs). This therefore favours signalling to PAK. However, βPAK may be released after activation allowing for amplification of the signal or initiation of other p21 actions(Manser et al 1995, Manser et al 1994).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abo A, Pick E, Hall A, Totty N, Teahan CG, Segal AW (1991) Activation of the NADPH oxidase involves the small GTP-binding protein p21Racl. Nature 353:668–670

    Article  PubMed  CAS  Google Scholar 

  • Adams AEM, Johnson DI, Longnecker RM, Sloat BF, Pringle JR (1990) CDC42 and CDC43, two additional genes involved in budding and the establishment of cell polarity in the yeast Saccharomyces cerevisiae. J Cell Biol 111:131–142

    Article  PubMed  CAS  Google Scholar 

  • Amano M, Ito M, Kimura K, Fukata Y, Chihara K, Matsui T, Hamajima Y, Okawa K, Iwamatsu A, Kaibuchi K (1996) Identification of a putative target for Rho as the serine-threonine kinase protein kinase N. Science 271:648–650

    Article  PubMed  CAS  Google Scholar 

  • Bagrodia S, Derijard B, Davis RJ, Cerione RA (1995a) Cdc42 and PAK-mediated signaling leads to Jun kinase and p38 mitogen activated protein kinase activation. J Biol Chem 270:27995–27998

    Article  PubMed  CAS  Google Scholar 

  • Bagrodia S, Taylor SJ, Creasy CL, Chernoff J, Cerione RA (1995b) Identification of a mouse P21cdc42/rac activated kinase. J Biol Chem 270:22731–22737

    Article  PubMed  CAS  Google Scholar 

  • Bement WM, Mooseker MS (1995) TEDS rule: a molecular rationale for differential regulation of myosins by phosphorylation of the heavy chain head. Cell Motil Cytoskeleton 31:8792

    Article  Google Scholar 

  • Benna JE, Faust LP, Babior BM (1994) The phosphorylation of the respiratory burst oxidase component p47phox during neurtophil activation. J Biol Chem 269:23431–23436

    PubMed  Google Scholar 

  • Benner GE, Dennis PB, Masaracchia RA (1995) Activation of an S6/H4 (PAK65) from human placenta by intramolecular and intermolecular autophosphorylation. J Biol Chem 270:21121–21128

    Article  PubMed  CAS  Google Scholar 

  • Bokoch GM, Wang Y, Bohl BP, Sells MA, Quilliam LA, Knaus UG (1996) Interaction of the Nck adapter protein with p21-activated kinase (PAK1). J Biol Chem 271:25746–25749

    Article  PubMed  CAS  Google Scholar 

  • Brown JL, Stowers L, Baer M, Trejo JA, Coughlin S, Chant J (1996) Human Ste20 homologue hPAK1 links GTPases to the JNK MAP kinase pathway. Curr Biol 6:598–605

    Article  PubMed  CAS  Google Scholar 

  • Brzeska H, Szczepanowska J, Hoey J, Korn ED (1996) The catalytic domain of Acanthamoeba myosin I heavy chain kinase. J Biol Chem 271:27056–27062

    Article  PubMed  CAS  Google Scholar 

  • Brzeska H, Knaus UG, Wang Z-Y, Bokoch GM, Korn ED (1997) p21-activated kinase has substrate specificity similar to Acanthamoeba myosin I. Proc Natl Acad Sci USA 94:1092–1095

    Article  PubMed  CAS  Google Scholar 

  • Bush J, Franek K, Cardelli J (1993) Cloning and characterization of seven novel Dictyostelium discoideum rac-related genes belonging to the rho family of GTPases. Gene 136:61–68

    Article  PubMed  CAS  Google Scholar 

  • Burbelo PD, Drechsel D, Hall A (1995) A conserved binding motif defines numerous candidate partner proteins for both Cdc42 and Rac GTPases. J Biol Chem 270:29071–29074

    Article  PubMed  CAS  Google Scholar 

  • Cerione RA, Zheng Y (1996) The Dbl family of oncogenes. Curr Opin Cell Biol 8:216–222

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Chen S, Yap S-F, Lim L (1996) The Caenorhabditis elegans p21-activated kinase (CePAK) colocalizes with CeRacl and Cdc42Ce at hypodermal cell boundaries during embryo elongation. J Biol Chem 271:26362–26368

    Article  PubMed  CAS  Google Scholar 

  • Chou MM, Blenis J (1996) The 70 kDa S6 kinase complexes with and is activated by the Rho family G proteins Cdc42 and Racl. Cell 17:573–583

    Article  Google Scholar 

  • Clerk A, Sugden PH (1997) Activation of p21-activated protein kinase a (aPAK) by hyperosmotic shock in neonatal ventricular myocytes. FEBS Lett 403:23–25

    Article  PubMed  CAS  Google Scholar 

  • Cvrckova F, De Virgilio C, Manser E, Pringle JR, Nasmyth K (1995) Ste20-like protein kinases are required for normal localization of cell growth and for cytokinesis in budding yeast. Genes Dev 9:1817–1830

    Article  PubMed  CAS  Google Scholar 

  • Dennis PB, Masaracchia RA (1993) Activation of an S6 kinase from human placenta by autophosphorylation. J Biol Chem 268:19833–19841

    CAS  Google Scholar 

  • Dharmawardhane S, Sanders LS, Martin SS, Daniels RH, Bokoch GM (1997) Localization of p21-activated kinase 1 (PAK1) to pinocytotic vesicles and cortical actin structures in stimulated cells. J Cell Biol 138:1265–1278

    Article  PubMed  CAS  Google Scholar 

  • Dutarte H, Davoust J, Gorvel J-P, Chavrier P (1996) Cytokinesis arrest and redistribution of actincytoskeleton regulatory components in cells expressing the Rho GTPase Cdc42Hs. J Cell Sci 109:367–377

    Google Scholar 

  • Fanger GR, Johnson NL, Johnson GL (1997) MEK kinases are regulated by EGF and selectively interact with Rac/Cdc42. EMBO J 16:4961–4972

    Article  PubMed  CAS  Google Scholar 

  • Faure S, Vigneron S, Doree M, Morin N (1997) A member of the Ste20/PAK family of protein kinases is involved in both arrest of Xenopus oocytes at G2/prophase of the first meiotic cell cycle and in prevention of apoptosis. EMBO J 16:5550–5561

    Article  CAS  Google Scholar 

  • Galisteo ML, Chernoff J, Su Y-C, Skolnik EY, Schlessinger J (1996) The adaptor protein Nck links receptor tyrosine kinases with the serine-threonine kinase Pakl. J Biol Chem 271:20997–21000

    Article  PubMed  CAS  Google Scholar 

  • Garrity PA, Rao Y, Salecker I, McGlade J, Pawson T, Zipursky SL (1996) Drosophila photoreceptor axon guidance and targeting requires the dreadlocks SH2/SH3 adaptor protein. Cell 85:639–650

    Article  PubMed  CAS  Google Scholar 

  • Harden N, Lee J, Loh H-Y, Ong Y-M, Tan I, Leung T, Manser E, Lim L (1996) A Drosophila homolog of the Rac-and Cdc42-activated serine/threonine kinase PAK is a potential focal adhesion and focal complex protein that co-localizes with dynamic actin structures. Mol Cell Biol 16:1896–1908

    CAS  Google Scholar 

  • Hildebrand JD, Taylor JM, Parsons JT (1996) An SH3 domain-containing GTPase-activating protein for Rho and Cdc42 associates with focal adhesion kinase. Mol Cell Biol 16:3169–3178

    PubMed  CAS  Google Scholar 

  • Hobert O, Schilling JW, Beckerle MC, Ullrich A, Jallal B (1996) SH3 domain dependent interaction of the proto-oncogene product Vav with the focal contact protein zyxin. Oncogene 12:1577–1581

    PubMed  CAS  Google Scholar 

  • Hunter T, Plowman GD (1997) The protein kinases of budding yeast: six score and more. Trends Biochem Sci 22:18–22

    Article  PubMed  CAS  Google Scholar 

  • Johnson LN, Noble MEM, Owen DJ (1996) Active and inactive protein kinases: structural basis for regulation. Cell 85:149–158

    Article  PubMed  CAS  Google Scholar 

  • Joneson T, McDonugh M, Bar-Sagi D, Van Aelst L (1996) Rac regulation of actin polymerization and proliferation by a pathway distinct from Jun kinase. Science 274:1374–1376

    Article  PubMed  CAS  Google Scholar 

  • Knaus UG, Morris S, Dong H-J, Chernoff J, Bokoch GM (1995) Regulation of human leukocyte p21-activated kinases through G-protein-coupled receptors. Science 269:221–223

    Article  PubMed  CAS  Google Scholar 

  • Kothakota S, Azuma T, Reinhard C, Klippel A, Tang J, Chu K, McGarry TJ, Kirschner MW, Koths K, Kwiatkowski DJ, Williams LT (1997) Caspase-3 generated fragments of gelsolin: effector of morphological change in apoptosis. Science 278:294–298

    Article  PubMed  CAS  Google Scholar 

  • Kozma R, Ahmed S, Best A, Lim L (1995) The Ras-related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. Mol Cell Biol 15:1942–1952

    CAS  Google Scholar 

  • Kozma R, Sarner S, Ahmed S, Lim L (1997) Rho family GTPases and neuronal growth cone remodelling: relationship between increased complexity induced by Cdc42Hs, Rac 1, and acetylcholine and collapse induced by RhoA and lysophosphatidic acid. Mol Cell Biol 17:1201–1211

    PubMed  CAS  Google Scholar 

  • Lamarche N, Tapon N, Stowers L, Burbelo PD, Aspenstrom P, Bridges T, Chant J, Hall A (1996) Rac and Cdc42 induce actin polymerization and G1 cell cycle progression independently of p65pK and the JNK/SAPK MAP kinase cascade. Cell 8:519–529

    Article  Google Scholar 

  • Leberer E, Dignard D, Harcus D, Thomas DY, Whiteway M (1992) The protein kinase homologue Ste20p is required to link the yeast pheromone response G-protein 13y subunits to downstream signalling components. EMBO J 11:4815–4824

    PubMed  CAS  Google Scholar 

  • Leberer E, Wu C, Leeuw T, Fourest-Lieuvin A, Segall JE, Thomas DY (1997a) Functional charac-terization of the Cdc42p binding domain of yeast Ste20p protein kinase. EMBO J 16:83–97

    Article  PubMed  CAS  Google Scholar 

  • Leberer E, Ziegelbauer Schmidt A, Harcus D, Dignard D, Ash J, Johnson L, Thomas DY (1997b) Virulence and hyphal formation of Candida albicans require the Ste20p-like protein kinase CaCla4p. Curr Biol 7:539–546

    Article  PubMed  CAS  Google Scholar 

  • Lee S-F, Cote GP (1995) Purification and characterization of a Dictyostelium protein kinase required for actin activation of the Mg2TATPase activity of Dictyostelium myosin 1D. J Biol Chem 170:11776–11782

    Google Scholar 

  • Lee S-F, Egelhoff TT, Mahasneh A, Cote GP (1996) Cloning and characterization of a Dictyostelium myosin I heavy chain kinase activated by Cdc42 and Rac. J Biol Chem 271:27044–27048

    Article  PubMed  CAS  Google Scholar 

  • Leeuw T, Fourest-Lieuvin A, Wu C, Chenevert J, Clark K, Whiteway M, Thomas DY, Leberer E (1995) Pheromone response in yeast: association of Bemlp with proteins of the MAP kinase cascade and actin. Science 270:1210–1213

    Article  PubMed  CAS  Google Scholar 

  • Lehman JM, Riethmuller G, Johnson JP (1990) Nck, a melanoma cDNA encoding a cytoplasmic protein consisting of Src homology units SH2 and SH3. Nucleic Acid Res 18: 1048

    Article  Google Scholar 

  • Leung T, Chen X-Q, Manser E, Lim L (1996) The p160 RhoA-binding kinase ROKa is a member of a kinase family and is involved in the reorganization of the cytoskeleton. Mol Cell Biol, 16:5313–5327

    CAS  Google Scholar 

  • Leung T, Chen X-Q, Tan I, Manser E, Lim L (1998) Myotonic dystrophy kinase-related Cdc42binding kinase acts as a Cdc42 effector in promoting cytoskeletal reorganization. Mol Cell Biol 18:130–140

    CAS  Google Scholar 

  • Lin R, Bagrodia S, Cerione R, Manor D (1997) A novel Cdc42Hs mutant induces cellular transformation. Curr Biol 7:794–797

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Styles C, Fink GR (1993) Elements of the yeast pheromone response pathway required for filamentous growth of diploids. Science 262:1741–1744

    Article  PubMed  CAS  Google Scholar 

  • Lu W, Katz S, Gupta R, Mayer BJ (1997) Activation of Pak by membrane localization mediated by an SH3 domain from the adaptor protein Nck. Curr Biol 7:85–94

    Article  PubMed  CAS  Google Scholar 

  • Luo L, Liao Y-J, Jan L-Y, Jan Y-N (1994) Distinct morphogenic functions of similar small GTPases: Drosophila Dracl is involved in axonal outgrowth and myoblast fusion. Genes Dev 8:1787–1802

    Article  PubMed  CAS  Google Scholar 

  • Manser E, Leung T, Salihuddin H, Tan L, Lim L (1993) A non-receptor tyrosine kinase that inhibits the GTPase activity of p21`cdc42. Nature 363:364–367

    Article  PubMed  CAS  Google Scholar 

  • Manser E, Leung T, Salihuddin H, Zhao Z-S, Lim L (1994) A brain serine/ threonine protein kinase activated by Cdc42 and Racl. Nature 367:40–46

    Article  PubMed  CAS  Google Scholar 

  • Manser E, Chong C, Zhao Z-S, Leung T, Michael G, Hall C, Lim L (1995) Molecular cloning of a new member of the p21-Cdc42/Rac-activated kinase (PAK) family. J Biol Chem 270:25070–25078

    Article  PubMed  CAS  Google Scholar 

  • Manser E, Huang H-Y, Loo T-H, Chen X-Q, Dong J-M, Leung T, Lim L (1997) Expression of constitutively active a-PAK reveals effects of the kinase on actin and focal complexes. Mol Cell Biol 17:1129–1143

    PubMed  CAS  Google Scholar 

  • Manser E, Loo T-H, Koh C-G, Zhao Z-S, Chen X-Q, Tan L, Tan I, Leung T, Lim L (1998) PAK kinases are directly coupled to the PIX family of nucleotide exchange factors. Mol Cell 1:183–192

    Article  PubMed  CAS  Google Scholar 

  • Marcus S, Polverino A, Chang E, Robbins D, Cobb MH, Wigler MH (1995) Shkl, a homolog of the Saccharomyces cerevisiae Ste20 and mammalian p65PAK protein kinases, is a component of a Ras/Cdc42 signaling module in the fission yeast Schizosaccharomyces pombe. Proc Natl Acad Sci U S A 92:6180–6184

    Article  PubMed  CAS  Google Scholar 

  • Martin GA, Bollag G, McCormick FA, Abo A (1995) A novel serine kinase activated by Rac/ Cdc42Hs-dependent autophosphorylation is related to PAK65 and Ste20. EMBO J 14:1970–1978

    PubMed  CAS  Google Scholar 

  • McCormick F (1994) Raf: the holy grail of Ras biology? Trends Cell Biol 4:347–350

    Article  PubMed  CAS  Google Scholar 

  • Michiels F, Habets GG, Stam JC, van der Kammen RA, Collard JG (1995) A role for Rac in Tiamlinduced membrane ruffling and invasion. Nature 375:338–340

    Article  PubMed  CAS  Google Scholar 

  • Minden A, Lin A, Claret F-X, Abo A, Karin M (1995) Selective activation of the JNK signalling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell 81:1147–1157

    Article  PubMed  CAS  Google Scholar 

  • Mosch H-U, Roberts RL, Fink GR (1996) Ras2 signals via the Cdc42/Ste20/ mitogen-activated protein kinase module to induce filamentous growth in Saccaromyces cerevisiae. Proc Natl Acad Sci U S A 93:5352–5356

    Article  PubMed  CAS  Google Scholar 

  • Munemitsu S, Innis MA, Clark R, McCormick F, Ullrich A, Polarkis P (1990) Molecular cloning and expression of a G25K cDNA, the human homolog of the yeast cell cycle gene CDC42. Mol Cell Biol 10:5977–5982

    PubMed  CAS  Google Scholar 

  • Nobes CD, Hall A (1995) Rho, Rac, and Cdc42 GTPases regulate the assembly of multi-molecular focal complexes associated with actin stress fibres, lamellipodia, and filopodia. Cell 81:5362

    Article  Google Scholar 

  • Nunn MF, Marsh JW (1996) Human immunodeficiency virus type 1 Nef associates with a member of the p21-activated kinase family. J Virol 70:6157–6161

    PubMed  CAS  Google Scholar 

  • Olson MF, Ashworth A, Hall A (1995) An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G, Science 269:1270–1272

    Article  PubMed  CAS  Google Scholar 

  • Osada S, Azawa M, Koyama T, Hirai S, Ohno S (1997) A domain containing the Cdc42/Rac interactive binding (CRIB) region of p65(PAK) inhibits transcriptional activation and cell transformation by the Ras-Rac pathway. FEBS Lett 404:227–233

    Article  PubMed  CAS  Google Scholar 

  • Ottilie S, Miller PJ, Johnson DI, Creasy CL, Sells MA, Bagrodia S, Forsburg SL, Chernoff J (1995) Fission yeast pakl + encodes a protein kinase that interacts with Cdc42p and is involved in the control of cell polarity and mating. EMBO J 14:5908–5919

    PubMed  CAS  Google Scholar 

  • Peter M, Neiman AM, Park H-O, van-Lohuizen M, Herskowitz I (1996) Functional analysis of the interaction between the small GTP binding protein Cdc42 and the Ste20 protein kinase in yeast. EMBO J 15:7046–7059

    PubMed  CAS  Google Scholar 

  • Polverino A, Frost J, Yang P, Hutchison M, Neiman AM, Cobb MH, Marcus S (1995) Activation of mitogen-activated protein kinase cascades by p21-activated protein kinases in cell-free extracts of Xenopus oocytes. J Biol Chem 270:26067–26070

    Article  PubMed  CAS  Google Scholar 

  • Prigmore E, Ahmed S, Best A, Kozma R, Manser E, Segal A, Lim L (1995) A 68 kDa kinase and p67 neutrophil oxidase are targets for Cdc42Hs and Racl in neutrophils. J Biol Chem 270:10717–10722

    Article  PubMed  CAS  Google Scholar 

  • Qui RG, Chen J, Kirn D, McCormick F, Symons M (1995) An essential role for Rho in Ras transformation. Nature 374:457–459

    Article  Google Scholar 

  • Qiu R-G, Abo A, McCormick F, Symons M (1997) Cdc42 regulates anchorage-independent growth and is necessary for Ras transformation. Mol Cell Biol 17:3449–3458

    PubMed  CAS  Google Scholar 

  • Ramer SW, Davis RW (1993) A dominant truncation allele identified a gene Ste20, that encodes a putative protein kinase necessary for mating in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 90:452–456

    Article  PubMed  CAS  Google Scholar 

  • Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A (1992) The small GTP-binding protein Rac regulates growth factor-induced membrane ruffling. Cell 70:401–410

    Article  PubMed  CAS  Google Scholar 

  • Roberts RL, Fink GR (1994) Elements of a single MAP kinase cascade in Saccharomyces cerevisiae mediate two developmental programs in the same cell type: mating and invasive growth. Genes Dev 8:2974–2985

    Article  PubMed  CAS  Google Scholar 

  • Rooney RD, Tuazon PT, Meek WE, Carrol EJ, Hagen JJ, Gump EL, Monnig CA, Lugo T, Traugh JA (1996) Cleavage arrest of early frog embryos by the G-protein-activated protein kinase PAK1. J Biol Chem 271:21498–21504

    Article  PubMed  CAS  Google Scholar 

  • Roux P, Gauthier-Rouviere C, Doucet-Brutin S, Fort P (1997) The small GTPases Cdc42Hs, Racl and RhoG delineate Raf-independent pathways that cooperate to transform NIH3T3 cells. Curr Biol 7:629–637

    Article  PubMed  CAS  Google Scholar 

  • Rudel T, Bokoch GM (1997) Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science 276: 1571–1574

    Article  PubMed  CAS  Google Scholar 

  • Sawai ET, Khan IH, Montbriand PM, Peterlin BM, Cheng-Mayer C, Luciw PA (1996) Activation of PAK by HIV and SIV Nef: importance for AIDS in rhesus macaques. Curr Biol 6:1519–1527

    Article  PubMed  CAS  Google Scholar 

  • Sells MA, Chernoff J (1997) Emerging from the Pak: the p21-activated protein kinase family. Trends Cell Biol 7:162–167

    Article  PubMed  CAS  Google Scholar 

  • Sells MA, Knaos UG, Bagrodia S, Ambrose DM, Bokoch GM, Chernoff J (1997) Human p21-activated kinase (Pakl) regulates actin organization in mammalian cells. Curr Biol 7:202–210

    Article  PubMed  CAS  Google Scholar 

  • Simon M-N, de Virgilio C, Souza B, Pringle JR, Abo A, Reed SI (1995) Role for the Rho-family GTPase Cdc42 in yeast mating-pheromone signal pathway. Nature 376:702–705

    Article  PubMed  CAS  Google Scholar 

  • Szczepanowska J, Zhang X, Herring CJ, Qin J, Korn ED, Brzeska H (1997) Identification by mass spectrometry of the phosphorylated residue responsible for activation of the catalytic domain of myosin I heavy chain kinase, a member of the PAK/Ste20 family. Proc Natl Acad Sci USA 94:8503–8508

    Article  PubMed  CAS  Google Scholar 

  • Tang Y, Chen Z, Ambrose D, Liu J, Gibbs JB, Chernoff J, Fields J (1997) Kinase-deficient Pakl mutants inhibit Ras transformation of Rat-1 fibroblasts. Mol Cell Biol 17:4454–4464

    PubMed  CAS  Google Scholar 

  • Taylor SS, Knighton DR, Sheng J, Sowadski JM, Gibbs CS, Zoller MJ (1993) A template for the protein kinase family. TIBS 18:84–89

    PubMed  CAS  Google Scholar 

  • Teo M, Manser E, Lim L (1995) Identification and molecular cloning of a p21cdc42/rac1 -activated serine/threonine kinase that is rapidly activated by thrombin in platelets. J Biol Chem 270:26690–26697

    Article  PubMed  CAS  Google Scholar 

  • Wang ZY, Brzeska H, Baines IC, Korn ED (1995) Properties of Acanthamoeba myosin I heavy chain kinase bound to phospholipid vesicles. J Biol Chem 270:27969–27976

    Article  PubMed  CAS  Google Scholar 

  • Werner LA, Manseau LJ (1997) A Drosophila gene with predicted rhoGEF, pleckstrin homology and SH3 domains is highly expressed in morphogenic tissue. Gene 187:107–114

    Article  PubMed  CAS  Google Scholar 

  • Westwick JK, Lambert QT, Clarke GJ, Symons M, Van Aelst L, Pestell RG, Der CJ (1997) Rac regulation of transformation, gene expression and actin organization by multiple PAK-independent pathways. Mol Cell Biol 17:1324–1335

    PubMed  CAS  Google Scholar 

  • Wu C, Whiteway M, Thomas DY, Leberer E (1995) Molecular characterization of Ste20p, a potential mitogen-activated protein or extracellular signal-regulated kinase (MEK) kinase kinase from Saccharomyces cerevisiae. J Biol Chem 270:15984–15992

    Article  PubMed  CAS  Google Scholar 

  • Wu C, Lee S-F, Furmaniak-Kazmierczak E, Cote GP, Thomas DY, Leberer E (1996) Activation of myosin-I by members of the Ste2Op protein kinase family. J Biol Chem 271:31787–31790

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Han J, Sells MA, Chenoff J, Knaus UG, Ulevitch RJ, Bokoch GM (1995) Rho family GTPases regulate p38 mitogen-activated protein kinase through the down-stream mediator Pakl. J Biol Chem 270:23934–23936

    Article  PubMed  CAS  Google Scholar 

  • Zhao Z-S, Leung T, Manser E, Lim, L (1995) Pheromone signalling in Saccharomyces cerevisiae requires the small GTP-binding protein Cdc42p and its activator CDC24. Mol Cell Biol 15:5246–5257

    CAS  Google Scholar 

  • Zhao Z-S, Manser E, Chen X-Q, Chong C, Leung T, Lim L (1998) A conserved negative regulatory region in uPAK: inhibition of the PAK kinases reveals their morphological roles downstream of Cdc42 and Racl. 18:2153–2163

    CAS  Google Scholar 

  • Zheng Y, Bender A, Cerione RA (1995) Interactions among proteins involved in bud-site selection and bud site assembly in Saccharomyces cerevisiae. J Biol Chem 270:626–630

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Manser, E., Lim, L. (1999). Roles of PAK Family Kinases. In: Jeanteur, P. (eds) Cytoskeleton and Small G Proteins. Progress in Molecular and Subcellular Biology, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58591-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58591-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63659-2

  • Online ISBN: 978-3-642-58591-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics