Skip to main content

RhoGAPs and RhoGDIs, (His)stories of Two Families

  • Chapter
Cytoskeleton and Small G Proteins

Abstract

As all GTPases, Rho proteins are found bound either to GDP or GTP. In the former state, they are supposedly inactive, in the latter state, they take an “active” conformation that allows them to interact with their so-called effectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Whitehead IP, Campbell S, Rossman KL, Der CJ (1997) Dbl family proteins. Biochem Biophys Acta 1332:F1–F23

    PubMed  CAS  Google Scholar 

  2. Boguski MS, McCormick F (1993) Proteins regulating Ras and its relatives. Nature 366:643–654

    Article  PubMed  CAS  Google Scholar 

  3. Fukumoto Y, Kaibuchi K, Hori H, Fujioka H, Araki S, Ueda T, Kikuchi A, Takai Y (1990) Molecular cloning and characterization of a novel type of regulatory protein (GDI) for the rho proteins, ras p21-like small GTP-binding proteins. Oncogene 5:1321–1328

    PubMed  CAS  Google Scholar 

  4. Ueda T, Kikuchi A, Ohga N, Yamamoto J, Takai Y (1990) Purification and characterization from bovine brain cytosol of a novel regulatory protein inhibiting the dissociation of GDP from and the subsequent binding of GTP to rhoB p20, a ras p21-like GTP-binding protein. J Biol Chem 265:9373–9380

    PubMed  CAS  Google Scholar 

  5. Lelias JM, Adra CN, Wulf GM, Guillemot JC, Khagad M, Caput D, Lim B (1993) cDNA cloning of a human mRNA preferentially expressed in hematopoietic cells and with homology to a GDP-dissociation inhibitor for the rho GTP-binding proteins. Proc Natl Acad Sci USA 90:1479–1483

    Article  PubMed  CAS  Google Scholar 

  6. Scherle P, Behrens T, Staudt LM (1993) Ly-GDI, a dissociation inhibitor of the RhoA GTPbinding protein, is expressed preferentially in lymphocytes. Proc Natl Acad Sci USA 90:7568–7572

    Article  PubMed  CAS  Google Scholar 

  7. Adra CN, Ko J, Leonard D, Wirth LJ, Cerione RA, Lim B (1993) Identification of a novel protein with GDP dissociation inhibitor activity for the ras-like proteins CDC42Hs and Racl. Genes Chromosomes Cancer 8:253–261

    Article  PubMed  CAS  Google Scholar 

  8. Zalcman G, Closson V, Camonis J, Honoré N, Rousseau-Merck M-F, Tavitian A, Olofsson B (1996) Rho GDI-3, a new GDP dissociation inhibitor. Identification of a non cytosolic GDI protein interacting with the small GTP-binding proteins RhoB and RhoG. J Biol Chem 271:30366–30374

    Article  PubMed  CAS  Google Scholar 

  9. Adra CN, Manor D, Ko JL, Zhu S, Horiuchi T, Van Aelst L, Cerione RA, Lim B (1997) RhoGDIg: a GDP-dissociation inhibitor for Rho proteins with preferential expression in brain and pancreas. Proc Natl Acad Sci USA 94:4279–4284

    Article  PubMed  CAS  Google Scholar 

  10. Masuda T, Tanaka K, Nonaka H, Yamochi W, Maeda A, Takai Y (1994) Molecular cloning and characterization of yeast rho GDP dissociation inhibitor. J Biol Chem 269:19713–19718

    PubMed  CAS  Google Scholar 

  11. Leffers H, Nielsen MS, Andersen AH, Honoré B, Madsen P, Vandkerckhove J, Celis JE (1993) Identification of two human rho GDP dissociation inhibitor proteins whose overexpression leads to disruption of actin cytoskeleton. Exp Cell Res 209:165–174

    Article  PubMed  CAS  Google Scholar 

  12. Gosser YQ, Nomanbhoy TK, Aghazadeh B, Manor D, Combs C, Cerione RA, Rosen MK (1997) C-terminal binding domain of Rho GDP-dissociation inhibitor directs N-terminal inhibitory peptide to GTPases. J Biol Chem 87:814–819

    Google Scholar 

  13. Wittinghofer A, Herrmann C (1995) Ras-effector interactions, the problem of specificity. FEBS Lett 369:52–56

    Article  PubMed  CAS  Google Scholar 

  14. Ando S, Kaibuchi K, Sazaki T, Hiraoka K, Nishiyama T, Mizuno T, Asada M, Nunoi H, Matsuda I, Matsuura Y, Polakis P, McCormick F, Takai Y (1992) Post-translational processing of rac P21s is important both for their interaction with the GDP/GTP exchange proteins and for their activation of NADPH oxidase. J Biol Chem 267:25709–25713

    PubMed  CAS  Google Scholar 

  15. Leonard D, Hart MJ, Platko JV, Eva A, Henzel W, Evans T, Cerrione RA (1992) The identification and characterization of a GDP-dissociation inhibitor (GDI) for the CDC42Hs protein. J Biol Chem 267:22860–22868

    PubMed  CAS  Google Scholar 

  16. Regazzi R, Kikuchi A, Takai Y, Wollheim C (1992) The small GTP-binding proteins in the cytosol of insulin-secreting cells are complexed to GDP dissociation inhibitor proteins. J Biol Chem 267:17512–17519

    PubMed  CAS  Google Scholar 

  17. Chuang TS, Xu X, Knaus UG, Hart MJ, Bokoch GM (1993) GDP dissociation inhibitor prevents intrinsic and GTPase activating protein-stimulated GTP hydrolysis by the Rac GTP-binding protein. J Biol Chem 268:775–778

    PubMed  CAS  Google Scholar 

  18. Sasaki T, Kato M, Takai Y (1993) Consequences of weak interaction of rho GDI with the GTP-bound forms of rho p21 and rac p21. J Biol Chem 268:23959–23963

    PubMed  CAS  Google Scholar 

  19. Bourmeyster N, Boquet P, Vignais P (1994) Role of bound GDP in the stability of the RhoARho GDI complex purified from neutrophil cytosol. Biochem Biophys Res Commun 205:174–179

    Article  PubMed  CAS  Google Scholar 

  20. Bourmeyster N, Stasia M-J, Garin J, Gagnon J, Boguet P, Vignais P (1992) Copurification of rho protein and the Rho-GDP dissociation inhibitor from bovine neutrophil cytosol. Effect of phosphoinositides on Rho ADP-ribosylation by the C3 exoenzyme of Clostridium botulinum. Biochemistry 31:12863–12869

    Article  PubMed  CAS  Google Scholar 

  21. Bourmeyster N, Vignais PV (1996) Phosphorylation of RhoGDI stabilizes the RhoA-RhoGDI complex in neutrophil cytosol. Biochem Biophys Res Commun 218:54–60

    Article  PubMed  CAS  Google Scholar 

  22. Abo A, Pick E, Hall A, Totty N, Teahan CG, Segal AW (1991) Activation of the NADPH oxidase involves the small GTP-binding protein p21-Racl. Nature 353:668–670

    Article  PubMed  CAS  Google Scholar 

  23. Isomura M, Kikuchi A, Ohga N, Takai Y (1991) Regulation of binding of rhoB p20 to membranes by its specific regulatory protein, GDP dissociation inhibitor. Oncogene 6:119–124

    PubMed  CAS  Google Scholar 

  24. Lang P, Gesbert F, Delespine-carmagnat M, Stancou R, Pouchelet M, Bertoglio J (1996) Protein kinase A phosphorylation of RhoA mediates the morphological and functional effects of cyclic AMP in cytotoxic lymphocytes. EMBO J 15:510–519

    PubMed  CAS  Google Scholar 

  25. Hancock JF, Hall A (1993) A novel role for Rho-GDI as an inhibitor of GAP proteins. EMBO J 12:1915–1921

    PubMed  CAS  Google Scholar 

  26. Hori Y, Kikuchi A, Isomura M, Katayama M, Miura Y, Fujioka H, Kaibuchi K, Takai Y (1991) Post-translational modifications of the C-terminal region of the rho protein are important for its interaction with membranes and the stimulatory and inhibitory GDP/GTP exchange proteins. Oncogene 6:515–522

    PubMed  CAS  Google Scholar 

  27. Kikuchi A, Kuroda S, Sasaki T, Kotani K, Hirata K, Katayama M, Takai Y (1992) Functional interactions of stimulatory and inhibitory GDP/GTP exchange proteins and their common substrate small GTP-binding protein. J Biol Chem 267:14611–14615

    PubMed  CAS  Google Scholar 

  28. Yaku H, Sasaki T, Takai Y (1994) The Dbl oncogene product as a GDP/GTP exchange protein for the Rho family: its properties in comparison with those of Smg GDS. Biochem Biophys Res Commun 198:811–816

    Article  PubMed  CAS  Google Scholar 

  29. Hart MJ, Maru Y, Leonard D, Witte ON, Evans T, Cerione RA (1992) A GDP dissociation inhibitor that serves as a GTPase inhibitor for the Ras-like protein CDC42Hs. Science 258:812–815

    Article  PubMed  CAS  Google Scholar 

  30. Keep NH, Barnes M, Barsukov I, Badii R, Lian L-Y, Segal AW, Moody PCE, Roberts GCK (1997) A modulator of rho family G proteins, rhoGDI, binds these G proteins via an immunoglobulin-like domain and a flexible N-terminal arm. Structure 5:623–633

    Article  PubMed  CAS  Google Scholar 

  31. Wu W-J, Leonard DA, Cerione RA, Manor D (1997) Interaction between Cdc42Hs and RhoGDI is mediated through the Rho insert region. J Biol Chem 272:26153–26158

    Article  PubMed  CAS  Google Scholar 

  32. Takaishi K, Kikuchi A, Kuroda S, Kotani K, Sasaki T, Takai Y (1993) Involvement of rho p21 and its inhibitory GDP/GTP exchange protein (rho GDI) in cell motility. Mol Cell Biol 13:7279

    Google Scholar 

  33. Takaishi K, Sasaki T, Kato M, Yamochi W, Kuroda S, Nakamura T, Takeichi M, Takai Y (1994) Involvement of Rho p21 small GTP-binding protein and its regulator in HGF-induced cell motility. Oncogene 9:273–279

    PubMed  CAS  Google Scholar 

  34. Kishi K, Sasaki T, Kuroda S, Itoh T, Takai Y (1993) Regulation of cytoplasmic division of Xenopus embryo by rho p21 and its inhibitory GDP/GTP exchange protein (rho GDI). J Cell Biol 120:1187–1195

    Article  PubMed  CAS  Google Scholar 

  35. Nishiyama T, Sasaki T, Takaishi K, Kato M, Yaku H, Araki K, Matsuura Y, Takai Y (1994) rac p21 is involved in insulin-induced membrane ruffling and rho p21 is involved in hepatocyte growth factor-and 12-Otetradecanoylphorbol-13-acetate (TPA)-induced membrane ruffling in KB cells. Mol Cell Biol 14:2447–2456

    Article  PubMed  CAS  Google Scholar 

  36. Takaishi K, Sasaki T, Kameyama T, Tsukita S, Takai Y (1995) Translocation of activated Rho from the cytoplasm to membrane ruffling area, cell-cell adhesion sites and cleavage furrows. Oncogene 11:39–48

    PubMed  CAS  Google Scholar 

  37. Mariot P, O’Sullivann J, Brown AM, Tatham PER (1996) Rho guanine nucleotide dissociation inhibitor protein (RhoGDI) inhibits exocytosis in mast cells. EMBO J 15:6476–6482

    PubMed  CAS  Google Scholar 

  38. Boivin D, Beliveau R (1995) Subcellular distrubution and membrane association of Rho-related small GTP-binding protiens in kidney cortex. Am J Physiol (Renal Fluid Electrolyte Physiol.) 269:F180–F189

    CAS  Google Scholar 

  39. Hirao M, Sato N, Kondo T, Yonemura S, Monden M, Sasaki T, Takai Y, Tsukita S, Tsukita S (1996) Regulation mechanism of ERM (Ezrin/Radixin/Moesin) protein/plasma membrane association: possible involvement of phosphatidylinositol turnover and Rho-dependent signaling pathway. J Cell Biol 135:37–51

    Article  PubMed  CAS  Google Scholar 

  40. Takahashi K, Sasaki T, Mammoto A, Takaishi K, Kameyama T, Tsukita S, Takai Y (1997) Direct interaction of the Rho GDP dissociation inhibitor with ezrin/radixin/moesin initiates the activation of the Rho small G protein. J Biol Chem 272:23371–23375

    Article  PubMed  CAS  Google Scholar 

  41. Mackay DJG, Esch F, Furthmayr H, Hall A (1997) Rho-and Rac-dependent assembly of focal adhesion complexes and actin filaments in permeabilized fibroblasts: an essential role for ezrin/radixin/moesin proteins. J Cell Biol 138:927–938

    Article  PubMed  CAS  Google Scholar 

  42. Platko JV, Leonard DA, Adra CN, Shaw RJ, Cerione RA, Lim B (1995) A single residue can modify target-binding affinity and activity of the functionnal domain of the rho-subfamily GDP dissociation inhibitors. Proc Natl Acad Sci USA 92:2974–2978

    Article  PubMed  CAS  Google Scholar 

  43. Danley DE, Chuang T-H, Bokoch GM (1996) Defective Rho GTPase regulation by IL lb-converting enzyme-mediated cleavage of D4 GDP dissociation inhibitor. J Immunol 157:500–503

    PubMed  CAS  Google Scholar 

  44. Na S, Chuang T-S, Cunningham A, Turi TG, Hanke JH, Bokoch GM, Danley DE (1996) D4-DGI, a substrate of CPP32, is proteolyzed during Fas-induced apoptosis. J Biol Chem 271:11209–11213

    Article  PubMed  CAS  Google Scholar 

  45. Guillemot J-C, Kruskal BA, Adra CN, Zhu S, Ko J-L, Burch P, Nocka K, Seetoo K, Simons E, Lim B (1996) Targeted disruption of guanosine diphosphate-dissociation inhibitor for rho-related proteins, GDID4: normal hematopoietic differentiation but subtle defect in superoxide production by macrophages derived from in vitro embryonal stem cell differentiation. Blood 88:2722–2731

    PubMed  CAS  Google Scholar 

  46. Trahey M, McCormick F (1987) A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants. Science 238:542–545

    Article  PubMed  CAS  Google Scholar 

  47. Trahey M, Wong G, Halenbeck R, Rubinfeld B, Martin GA, Ladner M, Long CM, Crosier WJ, Watt K, Koths K, McCormick F (1988) Molecular cloning of two types of GAP complementary DNA from human placenta. Science 242:1697–1700

    Article  PubMed  CAS  Google Scholar 

  48. Garrett MD, Self A], van Oers C, Hall A (1989) Identification of distinct cytoplasmic targets for ras/R-ras and rho regulatory proteins. J Biol Chem 264:10–13

    PubMed  CAS  Google Scholar 

  49. Garrett MD, Major GN, Totty N, Hall A (1991) Purification and N-terminal sequence of the p2lrho GTPase-activating protein, rho GAP. Biochem J 276:833–836

    PubMed  CAS  Google Scholar 

  50. Lancaster CA, Taylor-Harris PM, Self AJ, Brill S, van Erp HE, Hall A (1994) Characterization of rhoGAP. A GTPase-activating protein for rho-related small GTPases. J Biol Chem 269:1137–1142

    PubMed  CAS  Google Scholar 

  51. Hart MJ, Shinjo K, Hall A, Evans T, Cerione RA (1991) Identification of the human platelet GTPase activating protein for the CDC42Hs protein. J Biol Chem 266:2084020848

    Google Scholar 

  52. Barfod ET, Zheng Y, Kuang WJ, Hart MJ, Evans T, Cerione RA, Ashkenazi A (1993) Cloning and expression of a human CDC42 GTPase-activating protein reveals a functional SH3binding domain. J Biol Chem 268:26059–26062

    PubMed  CAS  Google Scholar 

  53. Morii N, Kumagai N, Nur EKMS, Narumiya S, Maruta H (1993) rho GAP of 28kDa (GAP2), but not of 190 kDa (p190), requires Asp65 and Asp67 of rho GTPase for its activation. J Biol Chem 268:27160–27163

    PubMed  CAS  Google Scholar 

  54. Barrett T, Xiao B, Dodson EJ, Dodson G, Ludbrook SB, Nurmahomed K, Gamblin SJ, Musacchio A, Smerdon SJ, Eccleston JF (1997) The structure of the GTPase-activating domain from p50rhoGAP. Nature 385:458–461

    Article  PubMed  CAS  Google Scholar 

  55. Rittinger K, Walker PA, Eccleston JF, Nurmahomed K, Owen D, Laue E, Gamblin SJ, Smerdon SJ (1997) Crystal structure of a small G protein in complex with the GTPaseactivating protein rhoGAP. Nature 388:693–697

    Article  PubMed  CAS  Google Scholar 

  56. Ridley AJ, Self AJ, Kasmi F, Paterson HF, Hall A, Marshall CI, Ellis C (1993) rho family GTPase activating proteins p190, bcr and rhoGAP show distinct specificities in vitro and in vivo. EMBO J 12:5151–5160

    PubMed  CAS  Google Scholar 

  57. Diekmann D, Brill S, Garrett MD, Totty N, Hsuan J, Monfries C, Hall C, Lim L, Hall A (1991) Bcr encodes a GTPase-activating protein for p2lrac. Nature 351:400–402

    Article  PubMed  CAS  Google Scholar 

  58. Manser E, Leung T, Monfries C, Teo M, Hall C, Lim L (1992) Diversity and versatility of GTPase activating proteins for the p2lrho subfamily of ras G proteins detected by a novel overlay assay. J Biol Chem 267:16025–16028

    PubMed  CAS  Google Scholar 

  59. Heisterkamp N, Stam K, Groffen J, de Klein A, Grosveld G (1985) Structural organization of the bcr gene and its role in the Ph’ translocation. Nature 315:758–761

    Article  PubMed  CAS  Google Scholar 

  60. Hariharan IK, Adams JM (1987) cDNA sequence for human bcr, the gene that translocates to the abl oncogene in chronic myeloid leukaemia. EMBO J 6:115–119

    PubMed  CAS  Google Scholar 

  61. Maru Y, Witte ON (1991) The BCR gene encodes a novel serine/threonine kinase activity within a single exon. Cell 67:459–468

    Article  PubMed  CAS  Google Scholar 

  62. Cerione RA, Zheng Y (1996) The Dbl family of oncogenes. Curr Opin Cell Biol 8:216–222

    Article  PubMed  CAS  Google Scholar 

  63. Chuang TH, Xu X, Kaartinen V, Heisterkamp N, Groffen J, Bokoch GM (1995) Abr and Bcr are multifunctional regulators of the Rho GTP-binding protein family. Proc Natl Acad Sci USA 92:10282–10286

    Article  PubMed  CAS  Google Scholar 

  64. Melo JV, Gordon DE, Cross NC, Goldman JM (1993) The ABL-BCR fusion gene is expressed in chronic myeloid leukemia. Blood 81:158–165

    PubMed  CAS  Google Scholar 

  65. Diamond J, Goldman JM, Melo JV (1995) BCR-ABL, ABL-BCR, BCR, and ABL genes are all expressed in individual granulocyte-macrophage colony-forming unit colonies derived from blood of patients with chronic myeloid leukemia. Blood 85:2171–2175

    PubMed  CAS  Google Scholar 

  66. Voncken JW, van Schaick H, Kaartinen V, Deemer K, Coates T, Landing B, Pattengale P, Dorseuil O, Bokoch GM, Groffen J, Heisterkamp N (1995) Increased neutrophil respiratory burst in bcr-null mutants. Cell 80:719–728

    Article  PubMed  CAS  Google Scholar 

  67. Heyworth PG, Knaus UG, Settleman J, Curnutte JT, Bokoch GM (1993) Regulation of NADPH oxidase activity by Rac GTPase activating protein(s). Mol Biol Cell 4:1217–1223

    PubMed  CAS  Google Scholar 

  68. Heisterkamp N, Morris C, Groffen J (1989) ABR, an active BCR-related gene. Nucleic Acids Res 17:8821–8831

    Article  PubMed  CAS  Google Scholar 

  69. Heisterkamp N, Kaartinen V, van Soest S, Bokoch GM, Groffen J (1993) Human ABR encodes a protein with GAPrac activity and homology to the DBL nucleotide exchange factor domain. J Biol Chem 268:16903–16906

    PubMed  CAS  Google Scholar 

  70. Tan EC, Leung T, Manser E, Lim L (1993) The human active breakpoint cluster region-related gene encodes a brain protein with homology to guanine nucleotide exchange proteins and GTPase-activating proteins. J Biol Chem 268:27291–27298

    PubMed  CAS  Google Scholar 

  71. Hall C, Monfries C, Smith P, Lim HH, Kozma R, Ahmed S, Vanniasingham V, Leung T, Lim L (1990) Novel human brain cDNA encoding a 34000 Mr protein n-chimaerin, related to both the regulatory domain of protein kinase C and BCR, the product of the breakpoint cluster region gene. J Mol Biol 211:11–16

    Article  PubMed  CAS  Google Scholar 

  72. Lim HH, Michael GJ, Smith P, Lim L, Hall C (1992) Developmental regulation and neuronal expression of the mRNA of rat n-chimaerin, a p2lrac GAP:cDNA sequence. Bhichem J 287:415–422

    CAS  Google Scholar 

  73. Ahmed S, Lee J, Wen LP, Zhao Z, Ho J, Best A, Kozma R, Lim L (1994) Breakpoint cluster region gene product-related domain of n-chimaerin. Discrimination between Rac-binding and GTPase-activating residues by mutational analysis. J Biol Chem 269:17642–17648

    PubMed  CAS  Google Scholar 

  74. Kozma R, Ahmed S, Best A, Lim L (1996) The GTPase-activating protein n-chimaerin cooperates with Racl and Cdc42Hs to induce the formation of lamellipodia and filopodia. Mol Cell Biol 16:5069–5080

    PubMed  CAS  Google Scholar 

  75. Ahmed S, Kozma R, Lee J, Monfries C, Harden N, Lim L (1991) The cysteine-rich domain of human proteins, neuronal chimaerin, protein kinase C and diacylglycerol kinase binds zinc. Evidence for the involvement of a zinc-dependent structure in phorbol ester binding. Biochem J 280:233–241

    PubMed  CAS  Google Scholar 

  76. Ahmed S, Lee L, Kozma R, Best A, Monfries C, Lim L (1993) A novel functional target for tumor-promoting phorbol esters and lysophosphatidic acid. The p2lrac-GTPase activating protein n-chimaerin. J Biol Chem 268:10709–10712

    PubMed  CAS  Google Scholar 

  77. Leung T, How BE, Manser E, Lim L (1993) Germ cell beta-chimaerin, a new GTPaseactivating protein for p2lrac, is specifically expressed during the acrosomal assembly stage in rat testis. J Biol Chem 268:3813–3816

    PubMed  CAS  Google Scholar 

  78. Hall C, Sin WC, Teo M, Michael GJ, Smith P, Dong JM, Lim HH, Manser E, Spurr NK, Jones TA et al. (1993) Alpha 2-chimerin, an SH2-containing GTPase-activating protein for the ras-related protein p2lrac derived by alternate splicing of the human n-chimerin gene, is selectively expressed in brain regions and testes. Mol Cell Biol 13:4986–4998

    PubMed  CAS  Google Scholar 

  79. Leung T, How BE, Manser E, Lim L (1994) Cerebellar beta 2-chimaerin, a GTPase-activating protein for p21 ras-related rac is specifically expressed in granule cells and has a unique N-terminal SH2 domain. J Biol Chem 269:12888–12892

    PubMed  CAS  Google Scholar 

  80. Otsu M, Hiles I, Gout I, Fry MJ, Ruiz-Larrea F, Panayotou G, Thompson A, Dhand R, Hsuan J, Totty N, Smith AD, Morgan SJ, Courtneidge SA, Parker P, Waterfield MD (1991) Characterization of two 85 kDa proteins that associate with receptor tyrosine kinases, middle-T/ pp60c-src complexes, and PI3-kinase. Cell 65:91–104

    Article  PubMed  CAS  Google Scholar 

  81. Skolnik EY, Margolis B, Mohammadi M, Lowenstein E, Fischer R, Drepps A, Ullrich A, Schlessinger J (1991) Cloning of PI3 kinase-associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine kinases. Cell 65:83–90

    Article  PubMed  CAS  Google Scholar 

  82. Musacchio A, Cantley LC, Harrison SC (1996) Crystal structure of the breakpoint cluster region-homology domain from phosphoinositide 3-kinase p85 alpha subunit. Proc Natl Acad Sci USA 93:14373–14378

    Article  PubMed  CAS  Google Scholar 

  83. Zheng Y, Bagrodia S, Cerione RA (1994) Activation of phosphoinositide 3-kinase activity by Cdc42Hs binding to p85. J Biol Chem 269:18727–18730

    PubMed  CAS  Google Scholar 

  84. Tolias KF, Cantley LC, Carpenter CL (1995) Rho family GTPases bind to phosphoinositide kinases. J Biol Chem 270:17656–17659

    Article  PubMed  CAS  Google Scholar 

  85. Bokoch GM, Vlahos CJ, Wang Y, Knaus UG, Traynor-Kaplan AE (1996) Rac GTPase interacts specifically with phosphatidylinositol 3-kinase. Biochem J 315:775–779

    PubMed  CAS  Google Scholar 

  86. Settleman J, Albright CF, Foster LC, Weinberg RA (1992) Association between GTPase activators for Rho and Ras families. Nature 359:153–154

    Article  PubMed  CAS  Google Scholar 

  87. Settleman J, Narasimhan V, Foster LC, Weinberg RA (1992) Molecular cloning of cDNAs encoding the GAP-associated protein p190: implications for a signaling pathway from ras to the nucleus. Cell 69:539–549

    Article  PubMed  CAS  Google Scholar 

  88. Foster R, Hu KQ, Shaywitz DA, Settleman J (1994) p190 RhoGAP, the major RasGAPassociated protein, binds GTP directly. Mol Cell Biol 14:7173–7181

    PubMed  CAS  Google Scholar 

  89. McGlade J, Brunkhorst B, Anderson D, Mbamalu G, Settleman J, Dedhar S, Rozakis-Adcock M, Chen LB, Pawson T (1993) The N-terminal region of GAP regulates cytoskeletal structure and cell adhesion. EMBO J 12:3073–3081

    PubMed  CAS  Google Scholar 

  90. Cheng JC, Frackelton AR Jr, Bearer EL, Kumar PS, Kannan B, Santos-Moore A, Rifai A, Settleman J, Clark JW (1995) Changes in tyrosine-phosphorylated p190 and its association with p120 type I and p100 type II rasGAPs during myelomonocytic differentiation of human leukemic cells. Cell Growth Differ 6:139–148

    PubMed  CAS  Google Scholar 

  91. Chang JH, Gill S, Settleman J, Parsons SJ (1995) c-Src regulates the simultaneous rearrangement of actin cytoskeleton, p190RhoGAP, and p120RasGAP following epidermal growth factor stimulation. J Cell Biol 130:355–368

    Article  PubMed  CAS  Google Scholar 

  92. Burbelo PD, Miyamoto S, Utani A, Brill S, Yamada KM, Hall A, Yamada Y (1995) p190-B, a new member of the Rho GAP family, and Rho are induced to cluster after integrin cross-linking. J Biol Chem 270:30919–30926

    Article  PubMed  CAS  Google Scholar 

  93. Cicchetti P, Mayer BJ, Thiel G, Baltimore D (1992) Identification of a protein that binds to the SH3 region of Abl and is similar to Bcr and GAP-rho. Science 257:803–806

    Article  PubMed  CAS  Google Scholar 

  94. Cicchetti P, Ridley AJ, Zheng Y, Cerione RA, Baltimore D (1995) 3BP-1, an SH3 domain binding protein, has GAP activity for Rac and inhibits growth factor-induced membrane ruffling in fibroblasts. EMBO J 14:3127–3135

    PubMed  CAS  Google Scholar 

  95. Jullien-Flores V, Dorseuil O, Romero F, Letourneur F, Saragosti S, Berger R, Tavitian A, Gacon G, Camonis JH (1995) Bridging Ral GTPase to Rho pathways. RLIP76, a Ral effector with CDC42/Rac GTPase-activating protein activity. J Biol Chem 270:22473–22477

    Article  PubMed  CAS  Google Scholar 

  96. Park SH, Weinberg RA (1995) A putative effector of Ral has homology to Rho/Rac GTPase activating proteins. Oncogene 11:2349–2355

    PubMed  CAS  Google Scholar 

  97. Cantor SB, Urano T, Feig LA (1995) Identification and characterization of Ralbinding protein 1, a potential downstream target of Ral GTPases. Mol Cell Biol 15:4578–4584

    PubMed  CAS  Google Scholar 

  98. Reinhard J, Scheel AA, Diekmann D, Hall A, Ruppert C, Bahler M (1995) A novel type of myosin implicated in signalling by rho family GTPases. EMBO J 14:697–704

    PubMed  CAS  Google Scholar 

  99. Wirth JA, Jensen KA, Post PL, Bement WM, Mooseker MS (1996) Human myosin-IXb, an unconventional myosin with a chimerin-like rho/rac GTPase-activating protein domain in its tail. J Cell Sci 109:653–661

    PubMed  CAS  Google Scholar 

  100. Homma Y, Emori Y (1995) A dual functional signal mediator showing RhoGAP and phospholipase C-delta stimulating activities. EMBO J 14:286–291

    PubMed  CAS  Google Scholar 

  101. Tribioli C, Droetto S, Bione S, Cesareni G, Torrisi MR, Lotti LV, Lanfrancone L, Toniolo D, Pelicci P (1996) An X chromosome-linked gene encoding a protein with characteristics of a rhoGAP predominantly expressed in hematopoietic cells. Proc Natl Acad Sci USA 93:695–699

    Article  PubMed  CAS  Google Scholar 

  102. Touré A, Dorseuil O, Morin L, Timmons P, Jégou B, Reibel L, Gacon G (1998) p58MgcRacGap, a new human GTPase activating protein for Rac and Cdc42 similar to Drosophila rotundRacGAP gene product is expressed in male germ cells. J Biol Chem 273:6019–6023

    Article  PubMed  Google Scholar 

  103. Hildebrand JD, Taylor JM, Parsons JT (1996) An SH3 domain-containing GTPase-activating protein for Rho and Cdc42 associates with focal adhesion kinase. Mol Cell Biol 16:3169–3178

    PubMed  CAS  Google Scholar 

  104. Agnel M, Roder L, Vola C, Griffin-Shea R (1992) A Drosophila rotund transcript expressed during spermatogenesis and imaginal disc morphogenesis encodes a protein which is similar to human Rac GTPase-activating (racGAP) proteins. Mol Cell Biol 12:5111–5122

    PubMed  CAS  Google Scholar 

  105. Hoemann CD, Bergeret E, Guichard A, Griffin-Shea R (1996) Alternative splicing of the Drosophila melanogaster rotundRacGAP gene. Gene 168:135–141

    Article  PubMed  CAS  Google Scholar 

  106. Guichard A, Bergeret E, Griffin-Shea R (1997) Overexpression of RnRacGAP in Drosophila melanogaster deregulates cytoskeletal organisation in cellularising embryos and induces discrete imaginal phenotypes. Mech Dev 61:49–62

    Article  PubMed  CAS  Google Scholar 

  107. Chen W, Blanc J, Lim L (1994) Characterization of a promiscuous GTPase-activating protein that has a Bcr-related domain from Caenorhabditis elegans. J Biol Chem 269:820–823

    PubMed  CAS  Google Scholar 

  108. Ludbrook SB, Eccleston JF, Strom M (1997) Cloning and characterization of a rhoGAP homolog from Dictyostelium discoideum. J Biol Chem 272:15682–15686

    Article  PubMed  CAS  Google Scholar 

  109. Bender A, Pringle JR (1991) Use of a screen for synthetic lethal and multicopy suppressee mutants to identify two new genes involved in morphogenesis in Saccharomyces cerevisiae. Mol Cell Biol 11:1295–1305

    PubMed  CAS  Google Scholar 

  110. Zheng Y, Cerione R, Bender A (1994) Control of the yeast bud-site assembly GTPase Cdc42. Catalysis of guanine nucleotide exchange by Cdc24 and stimulation of GTPase activity by Bem3. J Biol Chem 269:2369–2372

    PubMed  CAS  Google Scholar 

  111. Wang T, Bretscher A (1995) The rho-GAP encoded by BEM2 regulates cytoskeletal structure in budding yeast. Mol Biol Cell 6:1011–1024

    PubMed  CAS  Google Scholar 

  112. Chen GC, Zheng L, Chan CS (1996) The LIM domain-containing Dbml GTPase-activating protein is required for normal cellular morphogenesis in Saccharomyces cerevisiae. Mol Cell Biol 16:1376–1390

    PubMed  CAS  Google Scholar 

  113. Peterson J, Zheng Y, Bender L, Myers A, Cerione R, Bender A (1994) Interactions between the bud emergence proteins Bemlp and Bem2p and Rho-type GTPases in yeast. J Cell Biol 127:1395–1406

    Article  PubMed  CAS  Google Scholar 

  114. Zheng Y, Hart MJ, Shinjo K, Evans T, Bender A, Cerione RA (1993) Biochemical comparisons of the Saccharomyces cerevisiae Bem2 and Bem3 proteins. Delineation of a limit Cdc42 GTPase-activating protein domain. J Biol Chem 268:24629–24634

    PubMed  CAS  Google Scholar 

  115. Muller L, Xu G, Wells R, Hollenberg CP, Piepersberg W (1994) LRG1 is expressed during sporulation in Saccharomyces cerevisiae and contains motifs similar to LIM and rho/racGAP domains. Nucleic Acids Res 22:3151–3154

    Article  PubMed  CAS  Google Scholar 

  116. Stevenson BJ, Ferguson B, De Virgilio C, Bi E, Pringle JR, Ammerer G, Sprague GF Jr (1995) Mutation of RGA1, which encodes a putative GTPase-activating protein for the polarity-establishment protein Cdc42p, activates the pheromone-reponse pathway in the yeast Saccharomyces cerevisiae. Genes Dev 9:2949–2963

    Article  PubMed  CAS  Google Scholar 

  117. Hart MJ, Maru Y, Leonard D, Witte ON, Evans T, Cerione RA (1992) A GDP dissociation inhibitor that serves as a GTPase inhibitor for the Ras-like protein CDC42Hs. Science 258:812–815

    Article  PubMed  CAS  Google Scholar 

  118. Chuang TH, Xu X, Knaus UG, Hart MJ, Bokoch GM (1993) GDP dissociation inhibitor prevents intrinsic and GTPase activating protein-stimulated GTP hydrolysis by the Rac GTP-binding protein. J Biol Chem 268:775–778

    PubMed  CAS  Google Scholar 

  119. Ahmed S, Kozma R, Hall C, Lim L (1995) GTPase-activating protein activity of n(alpha 1)Chimaerin and effect of lipids. Methods Enzymol 256:114–125

    Article  PubMed  CAS  Google Scholar 

  120. Duchesne M, Schweighoffer F, Parker F, Clerc F, Frobert Y, Thang MN, Tocque B (1993) Identification of the SH3 domain of GAP as an essential sequence for Ras-GAP-mediated signaling. Science 259:525–528

    Article  PubMed  CAS  Google Scholar 

  121. Martin GA, Yatani A, Clark R, Conroy L, Polakis P, Brown AM, McCormick F (1992) GAP domains responsible for ras p21-dependent inhibition of muscarcinic atrial K+ channel currents. Science 255:192–194

    Article  PubMed  CAS  Google Scholar 

  122. Schweighoffer F, Barlat I, Chevallier-Multon MC, Tocque B (1992) Implication of GAP in Ras-dependent transactivation of a polyoma enhancer sequence. Science 256:825–827

    Article  PubMed  CAS  Google Scholar 

  123. Tocque B, Delumeau I, Parker F, Maurier F, Multon MC, Schweighoffer F (1997) Ras-GTPase activating protein (GAP): a putative effector for Ras. Cell Signal 9:153–158

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zalcman, G., Dorseuil, O., Garcia-Ranea, J.A., Gacon, G., Camonis, J. (1999). RhoGAPs and RhoGDIs, (His)stories of Two Families. In: Jeanteur, P. (eds) Cytoskeleton and Small G Proteins. Progress in Molecular and Subcellular Biology, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58591-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58591-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63659-2

  • Online ISBN: 978-3-642-58591-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics