Skip to main content

Regulation of Cytoskeleton and Cell Adhesion by Rho Targets

  • Chapter
Cytoskeleton and Small G Proteins

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 22))

Zusammenfassung

Accumulating evidence indicates that cells undergo temporal and spatial reorganization of the cytoskeleton and cell adhesions upon stimulation by extracellular signals including growth factors, hormones and bioactive lipids or during cell movement and mitosis (Stossel 1993; Zigmond 1996). Cytoskeletons mainly consist of actin filaments, microtubules and intermediate filaments Nobes and Hall 1994). These filaments are dynamically reorganized during cell movement and mitosis. Cell adhesions are mediated by cell adhesion molecules such as cadherin and integrin, and their associated cytoplasmic proteins such as catenins and talin Takeichi 1990Gumbiner 1996). Cell adhesions are also dynamically reorganized during cell movement and mitosis. However, until recently little was known about the signal transduction pathways which regulate the reorganization of the cytoskeleton and cell adhesions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amano M, Ito M, Kimura K, Fukata Y, Chihara K, Nakano T, Matsuura Y, Kaibuchi K (1996a) Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J Biol Chem 271:20246–20249

    Article  CAS  Google Scholar 

  • Amano M, Mukai H, Ono Y, Chihara K, Matsui T, Hamajima Y, Okawa K, Iwamatsu A, Kaibuchi K (1996b) Identification of a putative target for Rho as a serine-threonine kinase, PKN. Science 271:648–650

    Article  CAS  Google Scholar 

  • Amano M, Chihara K, Kimura K, Fukata Y, Nakamura N, Matsuura Y, Kaibucni K (1997) Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase. Science 275:1308–1311

    Article  PubMed  CAS  Google Scholar 

  • Amano M, Chihara K, Nakamura N, Fukata Y, Yano T, Shibata M, Ikebe M, Kaibuchi K (1998) Myosin II activation promotes neurite retraction during the action of Rho and Rho-kinase. Genes Cell 3:177–188

    Article  CAS  Google Scholar 

  • Bennett V (1989) The spectrin-actin junction of erythrocyte membrane skeletons. Biochim Biophys Acta 988:107–121

    Article  PubMed  CAS  Google Scholar 

  • Bradley AB, Morgan KG (1987) Alterations in cytoplasmic calcium sensitivity during porcine coronary artery contractions as detected by aequorin. J Physiol 385:437–448

    PubMed  CAS  Google Scholar 

  • Braga V, Machesky LM, Hall A, Hotchin NA (1997) The small GTPases rho and rac are required for the establishment of cadherin-dependent cell-cell contacts (In Process Citation). J Cell Biol 137:1421–1431

    Article  PubMed  CAS  Google Scholar 

  • Chihara K, Amano M, Nakamura N, Yano T, Shibata M, Tokui T, Ichikawa H, Ikebe R, Ikebe M, Kaibuchi K (1997) Cytoskeletal rearrangements and transcriptional activation of c-fos serum response element by Rho-kinase. J Biol Chem 272:25121–25127

    Article  PubMed  CAS  Google Scholar 

  • Chong LD, Traynor-Kaplan A, Bokoch GM, Schwartz MA (1994) The small GTP-binding protein Rho regulates a phosphatidylinositol 4-phosphate 5-kinase in mammalian cells. Cell 79:507–513

    Article  PubMed  CAS  Google Scholar 

  • Fukata Y, Kimura K, Oshiro N, Saya H, Matsuura Y, Kaibuchi K (1998) Association of the myosin-binding subunit of myosin phosphatase and moesin: dual regulation of moesin phosphorylation by Rho-kinase and myosin phosphatase. J Cell Biol 141:409–418

    Article  PubMed  CAS  Google Scholar 

  • Fukumoto Y, Kaibuchi K, Hori Y, Fujioka H, Araki S, Ueda T, Kikuchi A, Takai Y (1990) Molecular cloning and characterization of a novel type of regulatory protein (GDI) for the rho proteins, ras p21-like small GTP-binding proteins. Oncogene 5:1321–1328

    PubMed  CAS  Google Scholar 

  • Giuliano KA, Taylor DL (1995) Measurement and manipulation of cytoskeletal dynamics in living cells. Curr Opin Cell Biol 7:4–12

    Article  PubMed  CAS  Google Scholar 

  • Gong MC, Iizuka K, Nixon G, Browne JP, Hall A, Eccleston JF, Sugai M, Kobayashi S, Somlyo AV, Somlyo AP (1996) Role of guanine nucleotide-binding proteins - ras-family or trimeric proteins or both - in Ca2+ sensitization of smooth muscle. Proc Natl Acad Sci USA 93:1340–1345

    Article  PubMed  CAS  Google Scholar 

  • Gumbiner BM (1996) Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84:345–357

    Article  PubMed  CAS  Google Scholar 

  • Habets GG, Scholtes EH, Zuydgeest D, van der Kammen RA, Stam JC, Berns A, Collard JG (1994) Identification of an invasioninducing gene, Tiam-1, that encodes a protein with homology to GDP-GTP exchangers for Rho-like proteins. Cell 77:537–549

    Article  PubMed  CAS  Google Scholar 

  • Hart MJ, Eva A, Evans T, Aaronson SA, Cerione RA (1991) Catalysis of guanine nucleotide exchange on the CDC42Hs protein by the dbl oncogene product. Nature 354:311–314

    Article  PubMed  CAS  Google Scholar 

  • Hartshorne DJ (1987) In: Physiology of the gastrointestinal tract. Johnson DR (ed) Raven, New York, pp 423–482

    Google Scholar 

  • Hill CS, Wynne J, Treisman R (1995) The Rho family GTPases RhoA Racl, CDC42Hs regulate transcriptional activation by SRF. Cell 81:1159–1170

    Article  PubMed  CAS  Google Scholar 

  • Hirao M, Sato N, Kondo T, Yonemura S, Monden M, Sasaki T, Takai Y, Tsukita S, Tsukita S (1996) Regulation mechanism of ERM (ezrin/radixin/moesin) protein/plasma membrane association: possible involvement of phosphatidylinositol turnover and rho-dependent signaling pathway. J Cell Biol 135:37–51

    Article  PubMed  CAS  Google Scholar 

  • Hirata K, Kikuchi A, Sasaki T, Kuroda S, Kaibuchi K, Matsuura Y, Seki H, Saida K, Takai Y (1992) Involvement of rho p21 in the GTP-enhanced calcium ion sensitivity of smooth muscle contraction. J Biol Chem 267:8719–8722

    PubMed  CAS  Google Scholar 

  • Homma Y, Emori Y (1995) A dual functional signal mediator showing RhoGAP and phospholipase C-delta stimulating activities. EMBO J 14:286–291

    PubMed  CAS  Google Scholar 

  • Horii Y, Beeler JF, Sakaguchi K, Tachibana M, Miki T (1994) A novel oncogene, ost, encodes a guanine nucleotide exchange factor that potentially links Rho and Rac signaling pathways. EMBO J 1354:4776–4786

    Google Scholar 

  • Imamura H, Tanaka K, Hihara T, Umikawa M, Kamei T, Takahashi K, Sasaki T, Takai Y (1997) Bnilp and bnrlp: downstream targets of the Rho family small G-proteins which interact with profilin and regulate actin cytoskeleton in Saccharomyces cerevisiae. EMBO J 16:2745–2755

    Article  PubMed  CAS  Google Scholar 

  • Ishizaki T, Maekawa M, Fujisawa K, Okawa K, Iwamatsu A, Fujita A, Watanabe N, Saito Y, Kakizuka A, Morii N, Narumiya S (1996) The small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase. EMBO J 15:1885–1893

    PubMed  CAS  Google Scholar 

  • Jalink K, Moolenaar WH (1992) Thrombin receptor activation causes rapid neural cell rounding and neurite retraction independent of classic second messengers. J Cell Biol 118:411–419

    Article  Google Scholar 

  • Jalink K, van Corven EJ, Hengeveld T, Morii N, Narumiya S, Moolenaar WH (1994) Inhibition of lysophosphatidate-and thrombin-induced neurite retraction and neuronal cell rounding by ADP ribosylation of the small GTP-binding protein Rho. J Cell Biol 126:801–810

    Article  PubMed  CAS  Google Scholar 

  • Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Feng J, Nakano T, Okawa K, Iwamatsu A, Kaibuchi K (1996) Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273:245–248

    Article  PubMed  CAS  Google Scholar 

  • Kimura K, Fukata Y, Matsuoka Y, Bennett V, Matsuura Y, Okawa K, Iwamatsu A, Kaibuchi K (1998) Regulation of association of adducin with actin filaments by Rho-kinase and myosin phosphatase. J Biol Chem 273:5542–5548

    Article  PubMed  CAS  Google Scholar 

  • Kishi K, Sasaki T, Kuroda S, Itoh T, Takai Y (1993) Regulation of cytoplasmic division of Xenopus embryo by rho p21 and its inhibitory GDP/GTP exchange protein (rho GDI). J Cell Biol 120:1187–1195

    Article  PubMed  CAS  Google Scholar 

  • Kitazawa T, Masuo M, Somlyo AP (1991) G protein-mediated inhibition of myosin light-chain phosphatase in vascular smooth muscle. Proc Natl Acad Sci USA 88:9307–9310

    Article  PubMed  CAS  Google Scholar 

  • Kohno H, Tanaka K, Mino A, Umikawa M, Imamura H, Fujiwara T, Fujita Y, Hotta K, Qadota H, Watanabe T, Ohya Y, Takai Y (1996) Bnilp implicated in cytoskeletal control is a putative target of Rholp small GTP binding protein in Saccharomyces cerevisiae. EMBO J 15:6060–6068

    PubMed  CAS  Google Scholar 

  • Kosako H, Amano M, Yanagida M, Tanabe K, Nishi Y, Kaibuchi K, Inagaki M (1997) Phosphorylation of glial fibrillary acidic protein at the same sites by cleavage furrow kinase and Rho-associated kinase. J Biol Chem 272:10333–10336

    Article  PubMed  CAS  Google Scholar 

  • Kozma R, Sarner S, Ahmed S, Lim L (1997) Rho family GTPases and neuronal growth cone remodelling: relationship between increased complexity induced by Cdc42Hs Racl, and acetylcholine and collapse induced by RhoA and lysophosphatidic acid. Mol Cell Biol 17:1201–1211

    PubMed  CAS  Google Scholar 

  • Kureishi Y, Kobayashi S, Amano M, Kimura K, Kanaide H, Nakano T, Kaibuchi K, Ito M (1997) Rho-associated kinase directly induces smooth muscle contraction through myosin light chain phosphorylation. J Biol Chem 272:12257–12260

    Article  PubMed  CAS  Google Scholar 

  • Kuroda S, Fukata M, Fujii K, Nakamura T, Izawa I, Kaibuchi K (1997) Regulation of cell-cell adhesion of MDCK cells by Cdc42 and Rac1 small GTPases. Biochem Biophys Res Commun 240:430–435

    Article  PubMed  CAS  Google Scholar 

  • Lancaster CA, Taylor-Harris PM, Self AJ, Brill S, van Erp HE, Hall A (1994) Characterization of rhoGAP. A GTPase-activating protein for rho-related small GTPases. J Biol Chem 269:1137–1142

    PubMed  CAS  Google Scholar 

  • Leung T, Manser E, Tan L, Lim L (1995) A novel serine/threonine kinase binding the Ras-related RhoA GTPase which translocates the kinase to peripheral membranes. J Biol Chem 270:29051–29054

    Article  PubMed  CAS  Google Scholar 

  • Leung T, Chen XQ, Manser E, Lim L (1996) The p160 RhoA-binding kinase ROKa is a member of a kinase family and is involved in the reorganization of the cytoskeleton. Mol Cell Biol 16:5313–5327

    PubMed  CAS  Google Scholar 

  • Mabuchi I, Hamaguchi Y, Fujimoto H, Morii N, Mishima M, Narumiya S (1993) A rho-like protein is involved in the organisation of the contractile ring in dividing sand dollar eggs. Zygote 1:325–331

    Article  PubMed  CAS  Google Scholar 

  • Mackay DJ, Esch F, Furthmayr H, Hall A (1997) Rho-and rac-dependent assembly of focal adhesion complexes and actin filaments in permeabilized fibroblasts: an essential role for ezrin/radixin/moesin proteins. J Cell Biol 138:927–938

    Article  PubMed  CAS  Google Scholar 

  • Madaule P, Furuyashiki T, Reid T, Ishizaki T, Watanabe G, Morii N, Narumiya S (1995) A novel partner for the GTP-bound forms of rho and rac. FEBS Lett 377:243–248

    Article  PubMed  CAS  Google Scholar 

  • Matsui T, Amano M, Yamamoto T, Chihara K, Nakafuku M, Ito M, Nakano T, Okawa K, Iwamatsu A, Kaibuchi K (1996) Rho-associated kinase, a novel serine/threonine kinase, as a putative target for the small GTP-binding protein Rho. EMBO J 15:2208–2216

    PubMed  CAS  Google Scholar 

  • Matsui T, Maeda M, Doi Y, Yonemura S, Amano M, Kaibuchi K, Tsukita S, Tsukita S (1998) Rho-Kinase phosphorylates COOH-terminal threonines of ezrin/radixin/moesin (ERM) proteins and regulates their head-to-tail association. J Cell Biol 140:647–657

    Article  PubMed  CAS  Google Scholar 

  • Mizuno T, Kaibuchi K, Yamamoto T, Kawamura M, Sakoda T, Fujioka H, Matsuura Y, Takai Y (1991) A stimulatory GDP/GTP exchange protein for smg p21 is active on the posttranslationally processed form of c-Ki-ras p21 and rhoA p21. Proc Natl Acad Sci USA 88:6442–6446

    Article  PubMed  CAS  Google Scholar 

  • Nakai K, Suzuki Y, Kihira H, Wada H, Fujioka M, Ito M, Nakano T, Kaibuchi K, Shiku H, Nishikawa M (1997) Regulation of myosin phosphatase through phosphorylation of the myosin-binding subunit in platelet activation. Blood 90: 3936–3942

    PubMed  CAS  Google Scholar 

  • Nakamura F, Amieva MR, Furthmayr H (1995) Phosphorylation of threonine 558 in the carboxyl-terminal actin-binding domain of moesin by thrombin activation of human platelets. J Biol Chem 270:31377–31385

    Article  PubMed  CAS  Google Scholar 

  • Nakamura F, Amieva MR, Hirota C, Mizuno Y, Furthmayr H (1996) Phosphorylation of 558T of moesin detected by site-specific antibodies in RAW264.7 macrophages. Biochem Biophys Res Commun 226:650–656

    Article  PubMed  CAS  Google Scholar 

  • Nishida E (1985) Opposite effects of cofilin and profilin from porcine brain on rate of exchange of actin-bound adenosine 5’-triphosphate. Biochemistry 24:1160–1164

    Article  PubMed  CAS  Google Scholar 

  • Nishiki T, Narumiya S, Morii N, Yamamoto M, Fujiwara M, Kamata Y, Sakaguchi G, Kozaki S (1990) ADP-ribosylation of the rho/rac proteins induces growth inhibition, neurite outgrowth and acetylcholine esterase in cultured PC-12 cells. Biochem Biophys Res Commun 167:265–272

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama T, Sasaki T, Takaishi K, Kato M, Yaku H, Araki K, Matsuura Y, Takai Y (1994) rac p21 is involved in insulin-induced membrane ruffling and rho p21 is involved in hepatocyte growth factor-and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced membrane ruffling in KB cells. Mol Cell Biol 14:2447–2456

    Article  PubMed  CAS  Google Scholar 

  • Nobes C, Hall A (1994) Regulation and function of the Rho subfamily of small GTPases. Curr Opin Genet Dev 4:77–81

    Article  PubMed  CAS  Google Scholar 

  • Noda M, Yasuda-Fukazawa C, Moriishi K, Kato T, Okuda T, Kurokawa K, Takuwa Y (1995) Involvement of rho in GTP gamma S-induced enhancement of phosphorylation of 20kDa myosin light chain in vascular smooth muscle cells: inhibition of phosphatase activity. FEBS Lett 367:246–250

    Article  PubMed  CAS  Google Scholar 

  • Nusrat A, Giry M, Turner JR, Colgan SP, Parkos CA, Carnes D, Lemichez E, Boquet P, Madara JL (1995) Rho protein regulates tight junctions and perijunctional actin organization in polarized epithelia. Proc Natl Acad Sci USA 92:10629–10633

    Article  PubMed  CAS  Google Scholar 

  • Paterson HF, Self AJ, Garrett MD, Just I, Aktories K, Hall A (1990) Microinjection of recombinant p2lrho induces rapid changes in cell morphology. J Cell Biol 111:1001–1007

    Article  PubMed  CAS  Google Scholar 

  • Qiu RG, Chen J, McCormick F, Symons M (1995) A role for Rho in Ras transformation. Proc Natl Acad Sci USA 92:11781–11785

    Article  PubMed  CAS  Google Scholar 

  • Reid T, Furuyashiki T, Ishizaki T, Watanabe G, Watanabe N, Fujisawa K, Morii N, Madaule P, Narumiya S (1996) Rhotekin, a new putative target for Rho bearing homology to a serine/ threonine kinase, PKN, and rhophilin in the rho-binding domain. J Biol Chem 271:13556–13560

    Article  PubMed  CAS  Google Scholar 

  • Ridley AJ, Hall A (1992) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70:389–399

    Article  PubMed  CAS  Google Scholar 

  • Ridley AJ, Comoglio PM, Hall A (1995) Regulation of scatter factor/hepatocyte growth factor responses by Ras, Rac, and Rho in MDCK cells. Mol Cell Biol 15:1110–1122

    PubMed  CAS  Google Scholar 

  • Schmalzing G, Richter HP, Hansen A, Schwarz W, Just I, Aktories K (1995) Involvement of the GTP binding protein Rho in constitutive endocytosis in Xenopus laevis oocytes. J Cell Biol 130:1319–1332

    Article  PubMed  CAS  Google Scholar 

  • Sellers JR, Adelstein RS (1987) In: Boyer P, Erevs EG (eds) The enzymes. Academic Press, San Diego, pp 381–418

    Google Scholar 

  • Settleman J, Albright CF, Foster LC, Weinberg RA (1992) Association between GTPase activators for Rho and Ras families. Nature 359:153–154

    Article  PubMed  CAS  Google Scholar 

  • Stossel TP (1993) On the crawling of animal cells. Science 260:1086–1094

    Article  PubMed  CAS  Google Scholar 

  • Strutt DI, Weber U, Mlodzik M (1997) The role of RhoA in tissue polarity and Frizzled signalling. Nature 387:292–295

    Article  PubMed  CAS  Google Scholar 

  • Takaishi K, Sasaki T, Kato M, Yamochi W, Kuroda S, Nakamura T, Takeichi M, Takai Y (1994) Involvement of Rho p21 small GTP-binding protein and its regulator in the HGF-induced cell motility. Oncogene 9:273–279

    PubMed  CAS  Google Scholar 

  • Takeichi M (1990) Cadherins: a molecular family important in selective cell-cell adhesion. Annu Rev Biochem 59:237–252

    Article  PubMed  CAS  Google Scholar 

  • Tanaka E, Sabry J (1995) Making the connection: cytoskeletal rearrangements during growth cone guidance. Cell 83:171–176

    Article  PubMed  CAS  Google Scholar 

  • Tessier-Lavigne M, Goodman CS (1996) The molecular biology of axon guidance. Science 274:1123–1133

    Article  PubMed  CAS  Google Scholar 

  • Tominaga T, Sugie K, Hirata M, Morii N, Fukata J, Uchida A, Imura H, Narumiya S (1993) Inhibition of PMA-induced, LFA-1-dependent lymphocyte aggregation by ADP ribosylation of the small molecular weight GTP binding protein, rho. J Cell Biol 120:1529–1537

    Article  PubMed  CAS  Google Scholar 

  • Tsukita S, Tsukita S, Nagafuchi A, Yonemura S (1992) Molecular linkage between cadherins and actin filaments in cell-cell adherens junctions. Curr Opin Cell Biol 4:834–839

    Article  PubMed  CAS  Google Scholar 

  • Tsukita S, Oishi K, Sato N, Sagara J, Kawai A, Tsukita S (1994) ERM family members as molecular linkers between the cell surface glycoprotein CD44 and actin-based cytoskeletons. J Cell Biol 126:391–401

    Article  PubMed  CAS  Google Scholar 

  • Turunen O, Wahlstrom T, Vaheri A (1994) Ezrin has a COOH-terminal actin-binding site that is conserved in the ezrin protein family. J Cell Biol 126:1445–1453

    Article  PubMed  CAS  Google Scholar 

  • Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, Morishita T, Tamakawa H, Yamagami K, Inui J, Maekawa M, Narumiya S (1997) Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension [see comments]. Nature 389:990–994

    Article  PubMed  CAS  Google Scholar 

  • Van Aelst L, D’Souza-Schorey C (1997) Rho GTPases and signaling networks. Genes Dev 11:2295–2322

    Article  PubMed  Google Scholar 

  • Vincent S, Settleman J (1997) The PRK2 kinase is a potential effector target of both Rho and Rac GTPases and regulates actin cytoskeletal organization. Mol Cell Biol 17:2247–2256

    PubMed  CAS  Google Scholar 

  • Watanabe G, Saito Y, Madaule P, Ishizaki T, Fujisawa K, Morii N, Mukai H, Ono Y, Kakizuka A, Narumiya S (1996) Protein kinase N (PKN) and PKN-related protein rhophilin as targets of small GTPase Rho. Science 271:645–648

    CAS  Google Scholar 

  • Watanabe N, Madaule P, Reid T, Ishizaki T, Watanabe G, Kakizuka A, Saito Y, Nakao K, Jockusch BM, Narumiya S (1997) p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. EMBO J 16:3044–3056

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka K, Imamura F, Shinkai K, Miyoshi J, Ogawa H, Mukai M, Komagome R, Akedo H (1995) Participation of rhop2l in serum-dependent invasion by rat ascites hepatoma cells. FEBS Lett 372:25–28

    Article  PubMed  CAS  Google Scholar 

  • Zigmond SH (1996) Signal transduction and actin filament organization. Curr Opin Cell Biol 8:66–73

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kaibuchi, K. (1999). Regulation of Cytoskeleton and Cell Adhesion by Rho Targets. In: Jeanteur, P. (eds) Cytoskeleton and Small G Proteins. Progress in Molecular and Subcellular Biology, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58591-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58591-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63659-2

  • Online ISBN: 978-3-642-58591-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics