Skip to main content

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 32))

  • 699 Accesses

Abstract

Semiconductor lasers cover the respectable wavelength range of about 0.4 to 11μn and are very pivotal in many aspects of human life. As Strite put it, the Holy Grail of GaN research is the realization of an injection laser which would represent the shortest-wavelength semiconductor laser ever demonstrated [12.1]. Although semiconductor lasers have many applications, for example, in communication as pumping sources, and mundane applications such as pointers, the most salient and imminent application of GaN-based lasers is in Digital Versatile Disks (DVD for short). This is a future version of the compact disk where the spot size and therefore the storage density is diffraction limited [12.2]. The present CD players utilize GaAs infrared lasers produced by Molecular Beam Epitaxy (MBE). The interim approach adopted by the industry relies on red lasers with which pit dimensions of about 0.4 μm can be read. Using a two-layer scheme in a DVD, the density can be increased from today’s 1 Gb to about 17 Gb per compact disk [12.3]. The cycle time in the consumer-electronics market is rather short in that even if red-laser-based DVDs are implemented, the blue laser can be introduced some two years after the red lasers. For consumer applications, CW-operation lifetimes on the order of 10,000 hours at 60°C are required. The nitride-based lasers with their inherently short wavelengths, when adopted, offer much increased data storage-capacity possibly in excess of 40 Gb per compact disk. Figure 12.1 presents a photograph of a Nichia InGaN laser emitting near 400 nm, which is intended for such an application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Strite: Priv. commun. (1991)

    Google Scholar 

  2. P. Asthana: IEEE Spectrum 31, 60 (1994)

    Article  Google Scholar 

  3. A. Bell: Sci. Am. 275 42–46 (July 1996)

    Article  Google Scholar 

  4. H. Morkoç, B. Sverdlov, G.B. Gao: Proc. IEEE 81, 492–556 (1993)

    Article  Google Scholar 

  5. M.G.A. Bernard, G. Duraffourg: Phys. Status Solidi 1, 699 (1961)

    Article  CAS  Google Scholar 

  6. D. Marcus: Light Transmission Optics (Van Nostrand-Reinhold, New York 1972)

    Google Scholar 

  7. H.C. Casey Jr., M.B. Panish: Heterostructure Lasers, Pt.A: Fundamentals Principles (Academic, New York 1978)

    Google Scholar 

  8. H. Kogelnik: In Guided-Wave Optoelectronics, 2nd edn., ed. by T. Tamir, Springer Ser. Electron. Photon., Vol.26 (Springer, Berlin, Heidelberg 1990)

    Google Scholar 

  9. H.K. V. Lotsch: Optik 32, 116, 189. 299, 553 (1970/71)

    Google Scholar 

  10. K.H. Schlereth, M. Tacke: IEEEJ. QE-26, 627–630 (1990)

    Article  CAS  Google Scholar 

  11. I. Skinner, R. Shail, B.L. Weiss: IEEEJ. QE-25, 6–11 (1989)

    Article  Google Scholar 

  12. G.M. Alman, L.A. Melter, M. Dutta: IEEEJ. QE-28, 650–657 (1992)

    Article  Google Scholar 

  13. H. Kressel, J. Butler: Heterojunction laser diode. Semiconductors and Semimetals 14, 65–194 (Academic, New York 1979)

    Google Scholar 

  14. H. Kressel. J. Butler: Semiconductor Lasers Heteroj unction LEDs (Academic, New York 1977)

    Google Scholar 

  15. H. Kressel (ed.): Semiconductor Devices for Optical Communication, 2nd edn., Topics Appl. Phys., Vol.39 (Springer, Berlin, Heidelberg 1982)

    Google Scholar 

  16. M.I. Nathan, A.B. Fowler, G. Burns: Phys. Rev. Lett. 11, 152 (1963)

    Article  CAS  Google Scholar 

  17. C. Weisbuch, B. Vinter: Quantum Semiconductor Structures (Academic, New York 1991)

    Google Scholar 

  18. T. Honda, A. Katsube, T. Sakaguchi, F. Koyama, K. Iga: Jpn. J. Appl. Phys. 34 Pt. 1, 3527 (1995)

    Article  CAS  Google Scholar 

  19. W.J. Fan, M.F. Li, T.C. Chong, J.B. Xia.: Solid State Commun. 98, 737 (1996)

    Article  CAS  Google Scholar 

  20. M. Suzuki, T. Uenoyama: Jpn. J. Appl. Phys. 35, 543 (1996)

    Article  CAS  Google Scholar 

  21. E.A. Albanesi, W.R.L. Lambrecht, B. Segall: J. Vac. Sci. Technol. B 12, 2470 (1994)

    Article  CAS  Google Scholar 

  22. M. Suzuki, T. Uenoyama: Electronic and optical properties of GaN based quantum wells, in Group III Nitride Semiconductor Compounds: Physics and Applications, ed. by B. Gil (Clarendon, London 1998)

    Google Scholar 

  23. A. Grindt, S.W. Koch, W.W. Chow: Appl. Phys. A 66, 1 (1998)

    Article  Google Scholar 

  24. W.W. Chow, A.F. Wright, A. Grind, F. Jahnke, S.W. Koch: Appl. Phys. Lett. 71, 2608 (1997)

    Article  CAS  Google Scholar 

  25. C.F. Hsu, P.S. Zory, C.H. Wu, M.A. Emanuel: IEEEJ. Selected Topics in Quantum Electronics on Semiconductor Lasers 13, 158 (1997)

    Google Scholar 

  26. J.I. Pankove: Optical Processes in Semiconductors (Prentice Hall, Englewood Cliffs, NJ 1971)

    Google Scholar 

  27. W.W. Chow, S.W. Koch. M. Sargent III: Semiconductor Laser Physics (Springer, Berlin, Heidelberg 1994)

    Book  Google Scholar 

  28. C.F. Hsu, P.S. Zory, P. Rees. M. Haase: Coulomb enhancement in CdZnSe single quantum well lasers. SPIE Proc. 3001, 271 (1997)

    CAS  Google Scholar 

  29. H. Haug, S.W. Koch: Quantum Theory of Optical and Electronic Properties of Semiconductors (World Scientific, Singapore 1990)

    Google Scholar 

  30. M. Asada: In Quantum Well Lasers, ed. by P.S. Zory (Academic, San Diego 1993) Chap. 2

    Google Scholar 

  31. M. Suzuki, T. Uenoyama: Optical gain and crystal symmetry in III-V nitride lasers. Appl. Phys. Lett. 69, 3378 (1996)

    CAS  Google Scholar 

  32. M. Suzuki, T. Uenoyama: Jpn. J. Appl. Phys. 35. 1420 (1996)

    Article  CAS  Google Scholar 

  33. A.T. Meney. E.P. O’Reilly: Theory of optical gain in ideal GaN heterostructure lasers. Appl. Phys. Lett. 67, 3013 (1995)

    CAS  Google Scholar 

  34. B. Wimmer, H. Krakauer, M. Weinert, A.J. Freeman: Phys. Rev. B24, 864 (1981)

    Google Scholar 

  35. S.L. Chuang: IEEEJ. QE-32, 1791 (1996)

    Article  CAS  Google Scholar 

  36. W.W. Chow, A.F. Wright, J.S. Nelson: Appl. Phys. Lett. 68, 296 (1996)

    Article  CAS  Google Scholar 

  37. P. Rees, S. Cooper. P.M. Smowton. P. Blood, J. Hegarty: IEEE Photon. Techn. Lett. 8, 197 (1996)

    Article  Google Scholar 

  38. W.J. Fan, M.F. Li, T.C. Chong, J.B. Xia: J. Appl. Phys. 80, 3471 (1996)

    Article  CAS  Google Scholar 

  39. D. Ahn: J. Appl. Phys. 76. 8206 (1994)

    Article  CAS  Google Scholar 

  40. J. Ding, M. Hagerott, T, Ishihara, H. Jeon, A.V. Nurmikko: Phys. Rev. B 47, 10528 (1993)

    Article  CAS  Google Scholar 

  41. T. Uenoyama: Phys. Rev. B51, 10228 (1995)

    Google Scholar 

  42. R. Cingolani: Priv. commun. (1997)

    Google Scholar 

  43. J. Petalas, S. Logothetidis, S. Boultadakis, M. Alouani, J.M. Wills: Phys. Rev. B 52, 8082 (1995)

    Article  CAS  Google Scholar 

  44. A. Diessel, W. Ebeling, J. Gutowski, B, Jobst, K. Schöll, D. Hommel, K. Henne-berger: Phys. Rev. B 52, 4736 (1995)

    Google Scholar 

  45. R. Cingolani, R. Rinaldi, L. Calcagnile, P. Prete, P. Sciacovelli, L. Tapfer, L. Vanzetti, G. Mula, F. Bassani. L. Sorba, A. Franciosi: Phys. Rev. B 49, 16769 (1994)

    Article  CAS  Google Scholar 

  46. R. Cingoloni, L. Calcagnile, G. Coli, D. Greco, R. Rinaldi, M. Lomascolo, M. DiDio, A. Franciosi, L. Vancetti, G.C. LaRocca, D. Camp: J. Opt. Soc. Am. B 13, 1268 (1996)

    Article  Google Scholar 

  47. G. Frankowsky, F. Steuber, V. Härle, F. Scholz, A. Hangleiter: Appl. Phys. Lett. 68, 46 (1996)

    Article  Google Scholar 

  48. R. Dingle, K.L. Shaklee. R.F. Leheny, R.B. Zetterstrom: Appl. Phys. Lett. 19, 5 (1971)

    Article  CAS  Google Scholar 

  49. R. Cingolani, G. Coli, R. Rinaldi, L. Calcagnila, H. Tang, A. Botchkarev, W. Kim. H. Morkoç: Phys. Rev. B56, 1491 (1997)

    Google Scholar 

  50. M. Kuball, E.-S. Jeon, Y.-Song, A.V. Nurmikko, P. Kozodoy, A. Abare, S. Keller, L.A. Coldren, U.K. Mishra, S.P. DenBaars, D.A. Steigerwald: Appl. Phys. Lett. 70, 2580 (1997)

    Article  CAS  Google Scholar 

  51. S. Nakamura, M. Seroh, N. Nagahama, N. Zwara, T.H. Umenoto, S. Sano, K. Chocho: Jpn. J. Appi. Phys. 38, L1568–1571 (1997)

    Article  Google Scholar 

  52. J.W. Bae. G. Shtengel, D, Kuksenkov, H. Temkin: Appl. Phys. Lett. 66, 2031 (1995)

    Article  CAS  Google Scholar 

  53. R. Olshansky, P. Hill, V. Lanzisera. W. Powazinik: IEEEJ. QE-23, 1410 (1987)

    Article  Google Scholar 

  54. R. Olshansky, C.B. Su. J. Manning, W. Powazinik: IEEEJ. QE-20, 838 (1984)

    Article  Google Scholar 

  55. R. Nagarajan, T. Kamiya, A. Krobe: IEEEJ. QE-25, 1410 (1989)

    Google Scholar 

  56. B.W. Hakki, T.L. Paoli: J. Appl. Phys. 46, 1299 (1975): and J. Appl. Phys. 44, 4113 (1973)

    Article  CAS  Google Scholar 

  57. V. Kozlov, A. Salokatve, A, Nurmikko, D.C. Grillo, Li He, J. Han, Y. Fan, M. Ringle, R.L. Gunshor: Appl. Phys. Lett. 65, 1863 (1994)

    Article  CAS  Google Scholar 

  58. G.E. Bulman, K. Doverspike. S.T. Sheppard, T.W. Weeks, M. Leonard, H.S. Kong, H. Dieringer, C. Carter, J. Edmond, J.D. Brown, J.T. Swindell, J.F. Schetzina: Electron. Lett. 33, 1556 (1997)

    Article  CAS  Google Scholar 

  59. Y. Narukawa, Y. Kawakami. M. Funato, S. Fujita, S. Fujita, S. Nakamura: Appl. Phys. Lett. 70, 981 (1996)

    Article  Google Scholar 

  60. H. Amano, N. Watanabe, M. Koike, I. Akasaki: Jpn. J. Appl. Phys. 32, L1000 (1993)

    Article  CAS  Google Scholar 

  61. T.J. Schmidt, X.H. Yang, W. Shan, J.J. Song, A. Salvador, W. Kim, Ö. Aktas, A. Botchkarev, H. Morkoç.: Appl. Phys. Lett. 68, 1820 (1996)

    Article  CAS  Google Scholar 

  62. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto: Jpn. J. Appl. Phys. 35, L74 (1996)

    Article  CAS  Google Scholar 

  63. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, H. Kiyoku: Appl. Phys. Lett. 69, 1568 (1996)

    Article  CAS  Google Scholar 

  64. I. Akasaki, S. Sota, H. Sakai, T. Tanaka, H. Amano: Electron. Lett. 32, 1105 (1996)

    Article  CAS  Google Scholar 

  65. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto: Jpn. J. Appl. Phys. 35, L217 (1996)

    Article  CAS  Google Scholar 

  66. A. Kuramata, K. Horino, K. Domen, K. Shinohora, T. Tanahashi: Appl. Phys. Lett. 67, 2521 (1995)

    Article  CAS  Google Scholar 

  67. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto: Appl. Phys. Lett. 68, 2105 (1996)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Morkoç, H. (1999). Semiconductor Lasers. In: Nitride Semiconductors and Devices. Springer Series in Materials Science, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58562-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58562-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63647-9

  • Online ISBN: 978-3-642-58562-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics