Skip to main content

Biophysikalische Grundlagen der Radiofrequenzkatheterablation

  • Chapter
Interventionelle kardiale Elektrophysiologie
  • 70 Accesses

Zusammenfassung

Der Begriff Radiofrequenz bezieht sich auf einen Wechselstrombereich zwischen 30 kHz und 300 MHz (DIN-Norm 40015; Reidenbach 1983). Prinzipiell kann Wechselstrom auf 3 verschiedene Arten auf Gewebe wirken: faradisch, elektrolytisch und thermisch. Beim faradischen Effekt ist die elektrische Erregbarkeit von Zellen, z. B. kardialer oder neuronaler Zellen, entscheidend. Der elektrolytische Effekt beruht auf der Ausrichtung der Ionen, entsprechend ihrer Ladung im Gleichstromfeld. Beide Effekte spielen bei Wechselstromfrequenzen oberhalb von 300 kHz keine Rolle, insbesondere fehlt die depolarisierende Wirkung der Wechselströme (Reth 1986). Damit kommt es nicht zu schmerzhaften Muskelkontraktionen und eine Allgemeinnarkose ist im Vergleich zur Gleichstromanwendung nicht notwendig. Die entscheidende Wirkung von Radiofrequenzstrom im Bereich von 350 bis 750 kHz, wie er für die Ablation kardialer Arrhythmien eingesetzt wird, beruht auf dem thermischen Effekt (Reidenbach 1983). Das Prinzip der Wärmeentstehung bei der Anwendung von hochfrequentem Strom auf Gewebe kommt in der Chirurgie seit mehr als 30 Jahren in Form des Elektrokauterns zum Einsatz. Weiterhin findet dieses Therapieprinzip in der Neurochirurgie bei stereotaktischen Eingriffen und in der Urologie zur transurethralen Prostataresektion Anwendung (Zervas u. Kuwayama 1972). Für die Katheterablation kardialer Arrhythmien wird ein unmodulierter sinusförmiger Strom verwendet, während bei den elektrochirurgischen Systemen zum elektrischen Schneiden und Koagulieren Systeme mit sehr viel höheren Spannungen, modulierten Strömen und kurzer intermittierender Impulsabgabe eingesetzt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Bharati S, Scheinman MM, Morady F, Hess DS, Lev M (1985) Sudden death after catheter-induced atrioventricular junctional ablation. Chest 88: 883–889

    Article  PubMed  CAS  Google Scholar 

  • Calkins H, Sousa J, El-Atassi R et al. (1991) Diagnosis and cure of the Wolff-ParkinsonWhite syndrome or paroxysmal supraventricular tachycardias during a single electrophysiologic test. N Engl J Med 324: 1612–1618

    Article  PubMed  CAS  Google Scholar 

  • Chin MC, Schuenemeyer T, Finkebeiner WE, Stern RA, Scheinman MM, Langberg JJ (1991) Histopathology of monopolar transcatheter radiofrequency ablation at the mitral annulus. PACE 14: 1956–1960

    Article  PubMed  CAS  Google Scholar 

  • Dorwarth U, Mattke S, Müller D, Hoffmann E, Steinbeck G (1993) Temperatur-kontrollierte radiofrequenz-katheterablation: Vergleich mono-and bipolarer Nekrosebildung. Z Kardiol 82 [Suppl 1]: 12

    Google Scholar 

  • Franklin JO, Langberg JJ, Oeff M, Finkbeiner WE, Herre JM, Griffin JC, Scheinman MM (1989) Catheter ablation of canine myocardium with radiofrequency energy. PACE 12/ II: 170–176

    Article  Google Scholar 

  • Geddes LA, Baker LE (1967) The specific resistance of biological material-a compendium of data for the biomedical engineer and physiologist. Med Biol Eng Comput 5: 271–293

    CAS  Google Scholar 

  • Goy JJ, Fromer M, Schlaepfer J, Kappenberger L (1990) Clinical efficacy of radiofrequency current in the treatment of patients with atrioventricular node reentrant tachycardia. J Am Coll Cardiol 16: 418–423

    Article  PubMed  CAS  Google Scholar 

  • Haines DE, Verow AF (1989) Determinants of lesion size during radiofrequency catheter ablation: Effect of electrode size, contact pressure and duration of energy delivery. PACE 12: 674 (Abstract)

    Article  Google Scholar 

  • Haines DE, Verow AF (1990) Observations on electrode-tissue interface temperature and effect on electrical impedance during radiofrequency ablation of ventricular myocardium. Circulation 82: 1034–1038

    Article  PubMed  CAS  Google Scholar 

  • Haines DE, Verow AF (1989) The impedance rise during radiofrequency ablation in vivo is prevented by maintaining an electrode tip temperature below the boiling point. Circulation 80 [Suppl II]: II-42 (Abstract)

    Google Scholar 

  • Haines DE, Watson DD, Verow AF (1990) Electrode radius predicts lesion radius during radiofrequency energy heating. Circ Res 67: 124–129

    Article  PubMed  CAS  Google Scholar 

  • Haines DE, Watson DD (1989) Tissue heating during radiofrequency catheter ablation: a thermodynamic model and observations in isolated perfused and superfused canine right ventricular free wall. PACE 12: 962–976

    Article  PubMed  CAS  Google Scholar 

  • Harvey M, Kim Y-N, Sousa J, El-Atassi R, Morady F, Calkins H, Langberg JJ (1992) Impedance monitoring during radiofrequency catheter ablations in humans. PACE 15: 22–27

    Article  PubMed  CAS  Google Scholar 

  • Haverkamp W, Hindricks G, Gülker H, Rissel U, Pfennings W, Borggrefe M, Breithardt G (1989) Coagulation of ventricular myocardium using radiofrequency alternating current: Biophysical aspects and experimental findings. PACE 12/lI: 187–195

    Article  Google Scholar 

  • Hindricks G, Haverkamp W, Gülker U, Budde T, Richter KD, Borggrefe M, Breithardt G (1989) Radiofrequency coagulation of ventricular myocardium: Improved prediction of lesion size by monitoring catheter tip temperature. Eur Heart J 10: 972–984

    PubMed  CAS  Google Scholar 

  • Hoffmann E, Dorwarth U, Pulter R, Gokel M, Steinbeck G (1992) Bedeutung physikalischer Parameter für die Effektivität der Radiofrequenz-Katheterablation. Biomed Tech (Berlin) 37: 62–68

    Article  CAS  Google Scholar 

  • Hoffmann E, Haberl R, Pulter R, Dainat C (1987) Phase displacement between voltage and current during radiofrequency catheter ablation. Circulation 76 [Suppl IV]: 278 (Abstract)

    Google Scholar 

  • Hoffmann E, Haberl R, Pulter R, Gokel M, Steinbeck G (1992) Biophysical parameters of radiofrequency catheter ablation. Int J Cardiol 37: 213–222

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann E, Mattke S, Dorwarth U et al. (1989) Temperature-controlled impedance-guided radiofrequency catheter ablation in swine. Circulation 80 [Suppl II]: 4 (Abstract)

    Google Scholar 

  • Hoffmann E, Mattke S, Dorwarth U, Müller D, Haberl R, Steinbeck G (1993) Temperature-controlled radiofrequency ablation with a new electrode catheter: First clinical experience. Eur Heart J 14: 57–64

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann E, Mattke S, Knecht M et al. (1990) Predictors of successful temperature-controlled radiofrequency AV ablation. Eur Heart J 11: 155 (Abstract)

    Article  Google Scholar 

  • Hoffmann E, Müller D, Gerth A, Remp T, Steinbeck G (1992) Bedeutung des Impedanz-Monitoring während Radiofrequenz-Katheterablation. Z Kardiol 81 [Suppl 11: 142 (Abstract)

    Google Scholar 

  • Hoffmann E, Remp T, Gerth A, Mattke S, Steinbeck G (1993) Does preablation impedance measurement improve the safety of radiofrequency catheter ablation? Eur Heart J 14 [Suppl]: 34

    Google Scholar 

  • Hoffmann E, Remp T, Gerth A, Mattke S, Steinbeck G (1993) Does impedance monitoring during radiofrequency catheter ablation reduce the risk of impedance rise? Circulation 88: I-165

    Google Scholar 

  • Hoffmann E, Remp T, Gerth A, Mattke S, Steinbeck G (1993) Preablation 50 kHz impedance: a new parameter for assessing myocardial wall contact before radiofrequency catheter ablation. J Am Coll Cardiol 21: 49 A (Abstract)

    Google Scholar 

  • Hughes HC (1986) Swine in cardiovascular research. Lab Anim Sci 36: 348–350

    PubMed  CAS  Google Scholar 

  • Jackman WM, Wang X, Friday KJ et al. (1991) Catheter ablation of atrioventricular junction using radiofrequency current in 17 patients. Comparison of standard and large-tip electrodes. Circulation 83: 1562–1576

    Article  PubMed  CAS  Google Scholar 

  • Kalbfleisch SJ, Langberg JJ (1992) Catheter ablation with radiofrequency energy: Biophysical aspects and clinical applications. J Cardiovasc Electrophysiol 3: 173–186

    Article  Google Scholar 

  • Langberg JJ, Chin MC, Rosenquist M, Dullet N, Van Hare G, Griffin JC, Scheinmann MM (1989) Catheter ablation of the atrioventricular junction with radiofrequency energy. Circulation 80: 1527–1535.

    Article  PubMed  CAS  Google Scholar 

  • Langberg JJ, Calkins H, El-Atassi R, Borganelli M, Leon A, Kalbfleisch SJ, Morady F (1992) Temperature monitoring during radiofrequency catheter ablation of accessory pathways. Circulation 86: 1469–1474

    Article  PubMed  CAS  Google Scholar 

  • Lee MA, Morady F, Kadish A et al. (1991) Catheter modification of the atrioventricular junction with radiofrequency energy for control of atrioventricular nodal reentry tachycardia. Circulation 83: 827–835

    Article  PubMed  CAS  Google Scholar 

  • Organ LW (1976) Electrophysiologic principles of radiofrequency lesion making. Appl Neurophysiol 39: 69–76

    PubMed  Google Scholar 

  • Packer DL, Kappler JH, Hammill SC, Stanton MS, Khandheria BK, Seward JB (1991) Characterization of the pathophysiologic sequelae of the impedance rise during radio-frequency ablation of accessory pathways. Circulation 84 [Suppl II]: II-709 (Abstract)

    Google Scholar 

  • Pecson RD, Roth DA, Mark VH (1969) Experimental temperature control of radiofrequency brain lesion size. J Neurosurg 30: 703–707

    Article  PubMed  CAS  Google Scholar 

  • Reidenbach HD (1983) Hochfrequenz-and Lasertechnik in der Medizin. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Remp T, Hoffmann E, Gerth A, Mattke S, Ebeling F, Steinbeck G (1994) Bedeutung des Impedanzabfalles während Radiofrequenz-Katheterablation. Z Kardiol 83 [Suppl]: 118

    Google Scholar 

  • Remp T, Hoffmann E, Gerth A, Mattke S, Ebeling F, Steinbeck G (1994) Drop in impedance and safety during catheter ablation: Validation of a predictive marker for impedance rise. Eur Heart J 15 [Suppl]: 286

    Google Scholar 

  • Reth J, Kruschwitz H, Müllenborn D (1986) Grundlagen der Elektrotechnik. Vieweg & Sohn, Braunschweig Wiesbaden

    Google Scholar 

  • Ring ME, Huang SKS, Gorman G, Graham AR (1989) Determinants of impedance rise during catheter ablation of bovine myocardium with radiofrequency energy. PACE 12: 1502–1513

    Article  PubMed  CAS  Google Scholar 

  • Swindle MM, Horneffer PJ, Garner TJ et al. (1986) Anatomic and anesthetic considerations in experimantal cardiopulmonary surgery in swine. Lab Anim Sci 36: 357–361

    PubMed  CAS  Google Scholar 

  • Weaver ME, Pantley GA, Bristow JD, Ladley HD (1986) A quantitative study of the anatomy and distribution of coronary arteries in swine in comparison with other animals and man. J Cardiovasc Res M 20: 907–917

    Article  CAS  Google Scholar 

  • Willems S, Chen X, Hindricks G, Haverkamp W, Rotman B, Shenasa M, Breithardt G, Borggrefe M (1996) Temperature controlled catheter ablation of manifest accessory pathways. Eur Heart J 17 (3): 445–452

    Article  PubMed  CAS  Google Scholar 

  • Zervas NT, Kuwayama A (1972) Pathological characteristics of experimental thermal lesions. Comparison of induction heating and radiofrequency electrocoagulation. J Neurosurg 37: 418–422

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hoffmann, E. (1999). Biophysikalische Grundlagen der Radiofrequenzkatheterablation. In: Hoffmann, E., Steinbeck, G. (eds) Interventionelle kardiale Elektrophysiologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58522-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58522-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63630-1

  • Online ISBN: 978-3-642-58522-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics