Skip to main content

Optical Study of Bubble Dynamics in Microgravity Pool Boiling

  • Chapter
  • 496 Accesses

Part of the book series: Heat and Mass Transfer ((HMT))

Abstract

Heat and mass transfer in boiling is determined by thermophysical mechanisms, especially by the interrelations between the surface of the heater and the liquid, and by the interfacial phenomena between liquid and vapor. It is generally assumed that the external forces like gravity in pool and shear forces in flow boiling are the most important factors for the bubble dynamics which determines the heat transfer. In microgravity buoyancy is completely or at least mostly eliminated. Therefore, pool boiling experiments in microgravity permit the study of heat transfer, and the related bubble dynamics caused by the growing bubbles themselves and by bubble interactions. In this article measurements of heat transfer and observed bubble behavior are discussed resulting from experiments performed in microgravity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe Y., Oka T., Mori Y.H., Toshiharu M., Nagashima A, (1994) Int. J. of Heat and Mass Tranfer, 37, pp.2405.

    Google Scholar 

  • Bromley, L.A.,(1950) Heat transfer in stable film boiling, Chem.Eng.Prog.,46, pp. 221–227.

    Google Scholar 

  • Cooper, M.G., A.J.P. Lloyd, (1969) The Microlayer in Nucleate Pool Boiling, Int. J. Heat and Mass Transfer,12 (1969), pp. 895–913.

    Article  Google Scholar 

  • Derjaguin B.V., (1955) Definition of the concept of and magnitude of the disjoining pres sure and its role in the static’s and kinetics of thin layers of liquid. Kolloidnyi Zhurnal, Vol. 17, pp. 191–197.

    Google Scholar 

  • Fritz W. (1934) Berechnungen des Maximalvolumens von Dampfblasen. Z.Physik. 36, pp. 379–384, (1934).

    Google Scholar 

  • Frederking, T.H.K. and Clark, J.A., (1963), Natural Convection Film Boiling on a sphere, Adv. Crogen. Eng., 8, pp.501

    Google Scholar 

  • Lay, J.H., and Dhir, V.K. (1995), Shape of a Vapor Stem During Nucleate Boiling of Satu rated Liquids, J. Heat Transfer, Vol.117, pp. 394–401.

    Article  Google Scholar 

  • Lee H.S. and Merte H., Chiaramonte, F. (1997), Pool boiling Curve in Microgravity, J. Thermophysics and Heat Transfer, Vol. 11, No.2.

    Google Scholar 

  • Lienhard, J.H. and Dhir V.K. (1973), Hydrodynamic Prediction of Peak Pool Boiling Heat Fluxes from Finite Bodies, J. Heat Transfer Vol.95 pp. 152–158.

    Article  Google Scholar 

  • Marek R. (1996) Einfluß thermokapillarer Konvektion und inerter Gase beim Blasensieden in unterkühlter Flüssigkeit. Dissertation TU München 1996.

    Google Scholar 

  • Merte H., J.A. Clark (1964) Boiling Heat Transfer to a Cryogenic Fluid at Standard, Frac tional, and Near-Zero Gravity. Int. J. of Heat and Mass Transfer, 86, pp.351–359 (1964).

    Google Scholar 

  • Ohta H. Kawaji M., Azuma H. et al. (1997):TR-1A Rocket Experiment on Nucleate Pool boiling heat Transfer un der Microgravity. DSC-Vol. 62/HTD-Vol.354, Microelectro-mechanical Systems (MEMS) ASME 1997.

    Google Scholar 

  • Picker G. (1998) Nicht-Gleichsgewichts-Effekte beim Wachsen und Kondensieren von Dampfblasen. Dissertation TU München 1998, Herbert Utz Verlag, München (1998).

    Google Scholar 

  • Pitschmann, P. and Grigull, U., (1970) Filmboiling on horizontal cylinders, Wärme-und Stoffubertragung, 3.pp75–84.

    Article  Google Scholar 

  • Plesset M.S., S.S. Sadhal (1979) An Analytical Estimation of the Microlayer Thickness in Nucleate Boiling: J. Heat Transfer, 101 (1979) pp. 180–182.

    Google Scholar 

  • Rohsenow W.M. (1952) A Method of Correlating Heat Transfer data for Surface Boiling of Liquids. Trans. ASME, Ser. C, J. Heat Transfer 74, pp. 969–976.

    Google Scholar 

  • Siegel R. (1967) Effects of Reduced Gravity on Heat Transfer. Advances in Heat Transfer, Vol.4, Academic Press, New York, London, pp. 143–228 (1967).

    Google Scholar 

  • Son G. and V.K. Dhir (1998) Numerical Simulation of a Single Bubble During Partial Nu cleate Boiling on a Horizontal Surface, Heat Transfer 1998, Proceedings of 11 th IHTC, Kyongju, Korea, Vol.2, pp. 533–538

    Google Scholar 

  • Steinbichler M., S. Micko, J. Straub (1998) Nucleate Boiling Heat Transfer on Small Hemi spherical Heaters and a Wire Under Microgravity. Heat Transfer 1998, Proceedings of the 11th IHTC, Vol 2, pp. 539–544, Kyongju, Korea (1998).

    Google Scholar 

  • Stephan P., J. Hammer (1994) A New Model for Nucleate Boiling. Heat Transfer Heat and Mass Transfer 30 (1994) pp. 119–125.

    Google Scholar 

  • Straub J., M. Zell, B. Vogel (1990) Pool Boiling in a reduced Gravity Field. Proc. 9th Int. Heat Transfer Conf., G. Hetserony, Ed. pp. 129–155, New York, Hemishere

    Google Scholar 

  • Straub J., Zell M., Vogel B. (1992) Proc. First European Symposium Fluids in Space, Ajac-cio, France 1991, ESA SP-353, 1992.

    Google Scholar 

  • Straub J. (1993) The Role of Surface Tension for Two-Phase Heat and Mass Transfer in the Absence of Gravity. Third World Conference on Experimental Heat Transfer, Fluid Me chanics, and Thermodynamics, Honolulu, Hawaii, USA October 1993, and Experimen tal Thermal and Fluid Science 1994; 9 pp. 253–273.

    Google Scholar 

  • Straub, J. Winter, G. Picker, M. Zell (1995) Boiling on a Miniature Heater under Micro gravity—A Simulation for Cooling of Electronic Devices. Proc. Of the 30th National Heat Transfer Conf., Portland, Oregon, (1995), ASME, HDT 1995, 305, pp. 61–69.

    Google Scholar 

  • Straub J.: The Micro Wedge Model (1995) A Physical Description of Nucleate Boiling Without External Forces. Lorenz Ratke (ed.) Materials and Fluids under Low Gravity. European Symposium on Gravity Dependent Phenomena in Physical Sciences <9,1995, Berlin>,GT-Springer Berlin.. 1996.

    Google Scholar 

  • Straub J. and Micko S. (1996), Boiling on a Wire under Microgravity Conditions-First Re sults from a Space Experiment, Performed in May 1996, Proc. of Eurotherm Seminar No.48, Paderborn, Germany, pp. 275–282, Edizioi ETS Pisa, Italy.

    Google Scholar 

  • Vogel B.,(1993), Analyse der Energieströme beim Sieden unter Schwerelosigkeit. Disserta tion TU München (1993).

    Google Scholar 

  • Wayner P.C., (1992), Evaporation and Stress in the Contact Line Region. Proc. Of the Engi neering Foundation Conference on Pool and Flow Boiling, V.K. Dhir and A.E. Bergles, eds. Santa Barbara, Cal. 1992, pp. 251–256.

    Google Scholar 

  • Weinzierl A., (1984), Untersuchung des Wärmeübergangs und seiner Transportmechanimen bei Siedevorgängen unter Schwerelosigkeit. Dissertation TU München (1984).

    Google Scholar 

  • Winter J., (1997), Kinetik des Blasenwachstums. Dissertation TU München (1997), Herbert Utz Verlag, München (1998).

    Google Scholar 

  • Zell M., (1991), Untersuchung des Siedevorgangs unter reduzierter Schwerkraft. Disserta tion TU München (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Straub, J. (1999). Optical Study of Bubble Dynamics in Microgravity Pool Boiling. In: Lehner, M., Mewes, D. (eds) Applied Optical Measurements. Heat and Mass Transfer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58496-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58496-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63620-2

  • Online ISBN: 978-3-642-58496-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics