Skip to main content

Retinoids in Mammalian Vision

  • Chapter
Retinoids

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 139))

Abstract

The vertebrate visual process is remarkable in its properties. Visual pigments characterized from various species vary in their maximum wavelength sensitivity from 380 nm to 620 nm, yet each has the same chromophore, 11-cis-retinal (or its 3-dehydro- or 3-hydroxy-derivative), which absorbs at 383 nm (393 nm, 3-dehydroretinal). The dynamic range of the visual system is enormous, allowing detection of contrast over an approx. 1010-fold range of background intensities. This is accomplished, in part, by employing highly sensitive rod photoreceptors at low levels of illumination and less sensitive cone photoreceptors at higher levels of illumination. In addition, photoreceptors are capable of reducing their sensitivity in response to increasing background illumination (adaptation), contributing to the dynamic range of the visual system. The extreme sensitivity of the visual system to photostimulation requires a low background of dark noise, a condition met by enveloping the chromophore within the interior of a protein (opsin) to form a structure with an isomerization activation barrier of 45kcallmole (Birge 1990), ensuring that thermal isomerization of rhodopsin is a rare event (but see Barlow et al. 1993). The resulting t ½ of the complex for thermal excitation is 420 years (Baylor et al. 1984). Some of the sensitivity of rod photoreceptors results from their participation in summation pools, in which the output from hundreds of rods converges on one downstream neuron (a ganglion cell).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler AJ, Spencer SA (1991) Effect of light on endogenous ligands carried by inter photoreceptor retinoid-binding protein. Exp Eye Res 53:337–346

    Article  PubMed  CAS  Google Scholar 

  • Alpern M (1971) Rhodopsin kinetics in the human eye. J Physiol (Lond) 217:447–471

    CAS  Google Scholar 

  • Alpern M, Maaseidvaag F, Ohba N (1971) The kinetics of cone visual pigments in man. Vision Res 11:539–549

    Article  PubMed  CAS  Google Scholar 

  • Amis S, Hofmann KP (1993) Two different forms of metarhodopsin II: Schiff base deprotonation precedes proton uptake and signaling state. Proc Natl Acad Sci USA 90:7849–7853

    Article  Google Scholar 

  • Asenjo AB, Rim J, Oprian DD (1994) Molecular determinants of human red/green color discrimination. Neuron 12:1131–1138

    Article  PubMed  CAS  Google Scholar 

  • Barlow RB, Birge RR, Kaplan E, Tallent JR (1993) On the molecular origin of photoreceptor noise. Nature 366:64–66

    Article  PubMed  CAS  Google Scholar 

  • Barry RJ, Canada FJ, Rando RR (1989) Solubilization and partial purification of retinyl ester synthetase and retinoid isomerase from bovine ocular pigment epithelium. J Biol Chem 264:9231–9238

    PubMed  CAS  Google Scholar 

  • Baylor D (1996) How photons start vision. Proc Natl Acad Sci USA 93:560–565

    Article  PubMed  CAS  Google Scholar 

  • Baylor D, Nunn GJ, Schnapf JL (1984) The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca fascicularis. J Physiol (Lond) 357:575–607

    CAS  Google Scholar 

  • Bavik CO, Eriksson U, Allen RA, Peterson PA (1991) Identification and partial characterization of a retinal pigment epithelial membrane receptor for plasma retinolb inding protein. J Biol Chem 266:14978–14985

    PubMed  CAS  Google Scholar 

  • Birge RR (1990) Nature of the primary photochemical events in rhodopsin and bacteriorhodopsin. Biochim Biophys Acta 1016:293–327

    Article  PubMed  CAS  Google Scholar 

  • Bok D, Heller J (1976) Transport of retinol from the blood to the retina: an autoradiographic study of the pigment epithelial cell surface receptor for plasma retinolbinding protein. Exp Eye Res 22:395–402

    Article  PubMed  CAS  Google Scholar 

  • Bok D, Ong DE, Chytil F (1984) Immunocytochemical localization of cellular retinol binding protein in the rat retina. Invest Ophthalmol Vis Sci 25:877–883

    PubMed  CAS  Google Scholar 

  • Bruylants A, Feytmants-De Medicis E (1970) Cleavage of the carbon-nitrogen double bond. In: Patai S (ed) The chemistry of the carbon-nitrogen double bond. Interscience, London, p 465

    Chapter  Google Scholar 

  • Buczylko J, Saari JC, Crouch RK, Palczewski K (1996) Mechanisms of opsin activation. J Biol Chem 271:20621–20630

    Article  PubMed  CAS  Google Scholar 

  • Bunt-Milam AH, Saari JC (1983) Immunocytochemical localization of two retinoidbinding proteins in vertebrate retina. J Cell Biol 97:703–712

    Article  PubMed  CAS  Google Scholar 

  • Bunt-Milam AH, Saari JC, Klock IB, Garwin GG (1977) Zonulae adherentes pore size in the external limiting membrane of the rabbit retina. Invest Ophthalmol Vis Sci 26:1377–1380

    Google Scholar 

  • Carlson A, Bok D (1992) Promotion of the release of 11-cis-retinal from cultured retinal pigment epithelium by interphotoreceptor retinoid-binding protein. Biochemistry 31:9056–9062

    Article  PubMed  CAS  Google Scholar 

  • Chader GJ (1989) Interphotoreceptor retinoid-binding protein (IRBP): a model protein for molecular biological and clinically relevant studies. Invest Ophthalmol Vis Sci 30:7–22

    PubMed  CAS  Google Scholar 

  • Cone RA, Cobbs III WH (1969) Rhodopsin cycle in the living eye of the rat. Nature 221:820–622

    Article  PubMed  CAS  Google Scholar 

  • Crouch RK, Chader GJ, Wiggert B, Pepperberg DR (1996) Retinoids and the visual process. Photochem Photobiol 64:613–621

    Article  PubMed  CAS  Google Scholar 

  • Dacey DM (1996) Circuitry for color coding in the primate retina. Proc Natl Acad Sci USA 93:582–588

    Article  PubMed  CAS  Google Scholar 

  • Das SR, Bhardwaj N, Kjeldbye H, Gouras P (1992) Möller cells of chicken retina synthesize 11-cis-retinol. Biochem J 285:907–913

    PubMed  CAS  Google Scholar 

  • Deigner PS, Law WC, Canada FJ, Rando RR (1989) Membranes as the energy source in the endergonic transformation of vitamin A to 11-cis-retinol. Science 244: 968–971

    Article  PubMed  CAS  Google Scholar 

  • Dowling JE (1960) Chemistry of visual adaptation in the rat. Nature 188:114–118

    Article  PubMed  CAS  Google Scholar 

  • Dräger U, McCaffery P (1997) Retinoic acid and development of the retina. Prog Retinal Eye Res 16:323–351

    Article  Google Scholar 

  • Duffy M, Sun Y, Wiggert B, Duncan T, Chader GJ, Ripps H (1993) Interphotoreceptor retinoid binding protein (IRBP) enhances rhodopsin regeneration in the experimentally detached retina. Exp Eye Res 57:771–782

    Article  PubMed  CAS  Google Scholar 

  • Edwards RB, Adler AJ, Dev S, Claycomb RC (1992) Synthesis of retinoic acid from retinol by cultured rabbit Möller cells. Exp Eye Res 54:481–490

    Article  PubMed  CAS  Google Scholar 

  • Eisenfeld AJ, Bunt-Milam AH, Saari JC (1985) Localization of retinoid-binding proteins in developing rat retina. Exp Eye Res 41:299–304

    Article  PubMed  CAS  Google Scholar 

  • Erickson JO, Blatz PE (1968) N-Retinylidene-l-amino-2-propanol: a Schiff base analog for rhodopsin. Vision Res: 1367–1375

    Google Scholar 

  • Eriksson U (1997) A membrane receptor for plasma retinol-binding protein (RBP) is expressed in the retinal pigment epithelium. Prog Retinal Eye Res 16:375–399

    Article  CAS  Google Scholar 

  • Fuchs S, Nakazawa Y, Maw M, Tamai M, Oguchi Y, Gal A (1995) A homozygous 1-base pair deletion in the arrestin gene is a frequent cause of Oguchi disease in Japanese. Nat Genet 10:360–362

    Article  PubMed  CAS  Google Scholar 

  • Futterman S, Saari JC, Blair S (1977) Occurrence of a binding protein for 11-cis-retinal in retina. J Biol Chem 252:3267–3271

    PubMed  CAS  Google Scholar 

  • Gorry P, Lufkin T, Dierich A, Rochette-Egly C, D’ecimo D, Doll’e P, Mark M, Durand B, Chambon P (1994) The cellular retinoic acid-binding protein I is dispensable. Proc Natl Acad Sci USA 91:9032–9036

    Article  PubMed  CAS  Google Scholar 

  • Gu M, Warshawsky I, Majerus PW (1992) Cloning and expression of a cytosolic megakaryocyte protein-tryosine-phosphatase with sequence homology to retinal-binding protein and yeast SEC14p. Proc Natl Acad Sci USA 89:2980–2984

    Article  PubMed  CAS  Google Scholar 

  • Gu S-M, Thompson DA, Srikumari CRS, Lorenz B, Finckh U, Nicoletti A, Murthy KR, Rathmann M, Kumaramanickavel G, Denton MJ, Gal A (1997) Mutations in RPE65 cause autosomal recessive childhood-onset severe retinal dystrophy. Nat Genet 17:194–197

    Article  PubMed  CAS  Google Scholar 

  • Haeseleer F, Huang J, Buczylko J, Possin DE, Lebioda L, Sokal I, Palczewski K, Saari JC (1998) Characterization of a putative photoreceptor all-trans-retinol dehydro genase (RDH). Invest Ophthalmol Vis Sci (to be published)

    Google Scholar 

  • Hamel CP, Tsilou E, Pfeffer BA, Hooks JJ, Detrick B, Redmond TM (1993) Molecular cloning and expression of RPE65, a novel retinal pigment epithelium-specific microsomal protein that is post-transcriptionally regulated in vitro. J Biol Chem 268:15751–15757

    PubMed  CAS  Google Scholar 

  • Hao W, Fong HKW (1996) Blue and ultraviolet light-absorbing opsin from the retinal pigment epithelium. Biochemistry 35:6251–6256

    Article  PubMed  CAS  Google Scholar 

  • Hecht S, Shlaer S, Pirenne M (1942) Energy, quanta and vision. J Gen Physiol 25:819–840

    Article  PubMed  CAS  Google Scholar 

  • Heller J (1975) Interactions of plasma retinol-binding protein with its receptor. J Biol Chem 250:3613–3619

    PubMed  CAS  Google Scholar 

  • Ho M-TP, Massey JB, Pownall HJ, Anderson RE, Hollyfield JG (1989) Mechanism of vitamin A movement between rod outer segments, interphotoreceptor retinoid binding protein, and liposomes. J Biol Chem 264:928–935

    PubMed  CAS  Google Scholar 

  • Hofmann KP, PulverMöller A, Buczylko J, Van Hooser P, Palczewski K (1992) The role of arrestin and retinoids in the regeneration pathway of rhodopsin. J Biol Chem 267:15701–15706

    PubMed  CAS  Google Scholar 

  • Imai H, Kojima D, Oura T, Tachibanaki S, Terakita A, Shichida Y (1997) Single amino acid residue as a functional determinant of rod and cone visual pigments. Proc Natl Acad Sci USA 94:2322–2326

    Article  PubMed  CAS  Google Scholar 

  • Jäger S, Lewis JW, Zvyaga TA, Szundi I, Dakmar TP, Kliger DS (1997) Chromophore structural changes in rhodopsin from nanoseconds to microseconds following pigment photolysis. Proc Natl Acad Sci USA 94:8557–8562

    Article  PubMed  Google Scholar 

  • Jäger S, Palczewski K, Hofmann KP (1996) Opsin/all-trans-retinal complex activates transducin by different mechanisms than photolyzed rhodopsin. Biochemistry 35:2901–2908

    Article  PubMed  Google Scholar 

  • Jin J, Jones GJ, Carter Cornwall M (1994) Movement of retinal along cone and rod photoreceptors. Visual Neurosci 11:389–399

    Article  CAS  Google Scholar 

  • Jones GJ, Crouch RK, Wiggert B, Carter Cornwall M, Chader GJ (1989) Retinoid requirements for recovery of sensitivity after visual-pigment bleaching in isolated photoreceptors. Proc Natl Acad Sci USA 86:9606–9610

    Article  PubMed  CAS  Google Scholar 

  • Kakkad BP, Ong DE (1988) Reduction of retinal bound to cellular retinol-binding protein (Type II) by microsomes from rat small intestine. J Biol Chem 263:12916–12919

    PubMed  CAS  Google Scholar 

  • Köhne W (1879) Chemische Vorgänge in der Netzhaut In: Hermann L, (ed) Handbuch der Physiologie, Erster Theil FCW Vogel, Leipzig: (In English as: Chemical processes in the retina. Vision Res 17:1269–1316 [1977])

    Google Scholar 

  • Lamb TD (1996) Gain and kinetics of activation in the G-protein cascade of photo transduction. Proc Natl Acad Sci USA 93:566–570

    Article  PubMed  CAS  Google Scholar 

  • Lampron C, Rochette-Egly C, Gorry P, Dolle P, Mark M, Lufkin T, LeMeur M, Chambon P (1995) Mice deficient in cellular retinoic acid binding protein II (CRABPII) or in both CRABPI and CRABPII are essentially normal. Development 121:539–548

    PubMed  CAS  Google Scholar 

  • Marlhens F, Bariel C, Griffoin J-M, Zrenner E, Amalric P, Eliaou C, Liu S-Y, Harris E, Redmond TM, Arnaud B, Mireille C, Hamel CP (1997) Mutations in RPE65 cause Leber’s congenital amaurosis. Nat Genet 17:139–141

    Article  PubMed  CAS  Google Scholar 

  • Martin-Alonso M-P, Ghosh S, Hernando N, Crabb JW, Coca-Prados M (1993) Differential expression of the cellular retinal-binding protein in bovine ciliary epithelium. Exp Eye Res 56:659–669

    Article  PubMed  CAS  Google Scholar 

  • Maw MA, Kennedy B, Knight A, Bridges R, Roth KE, Mani EJ, Mukkadan JK, Nancarrow D, Crabb JW, Denton MJ (1997) Mutation of the gene encoding cellular retinal-binding protein in autosomal recessive retinitis pigmentosa. Nat Genet 17:198–200

    Article  PubMed  CAS  Google Scholar 

  • Mertz JR, Shang E, Piantedosi R, Wei S, Wolgemuth DJ, Blaner WS (1997) Identification and characterization of a stereospecific human enzyme that catalyzes 9-cis-retinol oxidation. J Biol Chem 272:11744–11749

    Article  PubMed  CAS  Google Scholar 

  • Milam AH, De Leeuw AM, Gaur VP, Saari JC (1990) Immunolocalization of cellular retinoic acid-binding protein to Möller cells and/or a subpopulation of GABA positive amacrine cells in retinas of different species. J Comp Neurol 296:123–129

    Article  PubMed  CAS  Google Scholar 

  • Napoli JL, Posch KP, Fiorella PD, Boerman MHEM (1991) Physiological occurrence, biosynthesis and metabolism of retinoic acid: evidence for roles of cellular retinol binding protein (CRBP) and cellular retinoic acid-biding protein (CRABP) in the pathway of retinoic acid homeostasis. Biomed Pharmacother 45:131–143

    Article  PubMed  CAS  Google Scholar 

  • Nathans J (1990) Determinants of visual pigment absorbance: identification of the retinylidene Schiffs base counterion in bovine rhodopsin. Biochemistry 29:9746–9752

    Article  PubMed  CAS  Google Scholar 

  • Neitz M, Neitz J, Jacobs GH (1991) Spectral tuning of pigments underlying red-green color vision. Science 252:971–974

    Article  PubMed  CAS  Google Scholar 

  • Newman E, Reichenbach A (1996) The Möller cell: a functional element of the retina. Trends Neurol Sci 19:307–312

    Article  CAS  Google Scholar 

  • Nicoletti A, Wong DJ, Kawase K, Gibson LH, Yang-Feng TL, Richards JE, Thompson DA (1995) Molecular characterization of the human gene encoding an abundant 61 kDa protein specific to the retinal pigment epithelium. Hum Mol Genet 4:461–525

    Article  Google Scholar 

  • Noy N, Blaner WS (1991) Interactions of retinol with binding proteins: studies with rat cellular retinol-binding protein and with rat retinol-binding protein. Biochemistry 30:6380–6386

    Article  PubMed  CAS  Google Scholar 

  • Okajima T-I, Wiggert B, Chader GJ, Pepperberg DR (1994) Retinoid processing in retinal pigment epithelium of toad (Bufo marinus) J Biol Chem 269:21983–21989

    PubMed  CAS  Google Scholar 

  • Okajima T-I, Pepperberg DR, Ripps H, Wiggert B, Chader GJ (1989) Interphotore ceptor retinoid-binding protein: role in delivery of retinol to the pigment epithelium. Exp Eye Res 49:629–644

    Article  PubMed  CAS  Google Scholar 

  • Ong DE, MacDonald PN, Gubitosi AM (1988) Esterification of retinol in rat liver. J Biol Chem 263:5789–5796

    PubMed  CAS  Google Scholar 

  • Palczewski K (1997) GTP-binding-protein-coupled receptor kinases. Eur J Biochemistry 248:261–269

    Article  CAS  Google Scholar 

  • Palczewski K, Jäger S, Buczylko J, Crouch RK, Bredberg DL, Hofmann KP, Asson-Batres MA, Saari JC (1994) Rod outer segment retinol dehydrogenase: substrate specificity and role in phototransduction. Biochemistry 33:13741–13750

    Article  PubMed  CAS  Google Scholar 

  • Palczewski K, Saari JC (1997) Activation and inactivation steps in the visual transduction pathway. Curr Opin Neurobiol 7:500–504

    Article  PubMed  CAS  Google Scholar 

  • Pepperberg DR, Okajima T-I, Wiggert M, Ripps H, Crouch RK, Chader GJ (1993) Interphotoreceptor retinoid-binding protein (IRBP) Molecular biology and physiological role in the visual cycle of rhodopsin. Mol Neurobiol 7:61–84

    Article  PubMed  CAS  Google Scholar 

  • Perlman I (1978) Kinetics of bleaching and regeneration of rhodopsin in abnormal (RCS) and normal albino rats in vivo. J Physiol (Lond) 278:141–159

    CAS  Google Scholar 

  • Polans A, Baehr W, Palczewski K (1996) Turned on by Ca2+! The physiology and pathology of Ca2+-binding proteins in the retina. Trends Neurosci 19:547–554

    Article  PubMed  CAS  Google Scholar 

  • Posch KC, Burns RD, Napoli JL (1992) Biosynthesis of all-trans-retinoic acid from retinal. J Biol Chem 267:19676–19682

    PubMed  CAS  Google Scholar 

  • Rando RR (1996) Polyenes and vision. Chem Biol 3:255–262

    Article  PubMed  CAS  Google Scholar 

  • Ripps H (1982) Night blindness revisited: from man to molecules. Invest Ophthalmol Vis Sci 23:588–609

    PubMed  CAS  Google Scholar 

  • Rodieck RW (1998) The first steps in seeing. Sinauer, Sunderland

    Google Scholar 

  • Rushton WAH, Henry GH (1968) Bleaching and regeneration of cone pigments in man. Vis Res 8:617–631

    Article  PubMed  CAS  Google Scholar 

  • Saari JC (1994) Retinoids in photosensitive systems. In: Sporn MB, Roberts AB, Goodman DS (eds) The retinoids: biology, chemistry, and medicine, 2nd edn. Raven, New York, p 351

    Google Scholar 

  • Saari JC, Bredberg L (1982) Enzymatic reduction of 11-cis-retinal bound to cellular retinal-binding protein. Biochim Biophys Acta 716:266–272

    Article  PubMed  CAS  Google Scholar 

  • Saari JC, Bredberg DL (1989) Lecithin: retinol acyltransferase in retinal pigment epithelial microsomes. J Biol Chem 264:8636–8640

    PubMed  CAS  Google Scholar 

  • Saari JC, Bredberg L, Garwin GG (1982) Identification of the endogenous retinoids associated with three cellular retinoid-binding proteins from bovine retina and retinal pigment epithelium. J Biol Chem 257:13329–13333

    PubMed  CAS  Google Scholar 

  • Saari JC, Bredberg DL, Noy N (1994) Control of substrate flow at a branch in the visual cycle. Biochemistry 33:3106–3112

    Article  PubMed  CAS  Google Scholar 

  • Saari JC, Bunt-Milam AH, Bredberg DL, Garwin GG (1984) Properties and immuno cytochemical localization of three retinoid-binding proteins from bovine retina. Vision Res 24:1595–1603

    Article  PubMed  CAS  Google Scholar 

  • Saari JC, Garwin GG, Haeseleer F, Jang G-F, Palczewski K (1999) Phase partition and HPLC assays of retinoid dehydrogenases. Meth Enzymol 316, in press

    Google Scholar 

  • Saari JC, Garwin GG, Van Hooser JP, Palczewski K (1997a) (to be published) Reduction of all-trans-retinal limits regeneration of visual pigment in mice. Vision Res 38:1325–1333

    Article  Google Scholar 

  • Saari JC, Huang J, Possin DE, Fariss RN, Leonard J, Garwin GG, Crabb JW, Milam AH (1997b) Cellular retinal-binding protein is expressed in oligodendrocytes in optic nerve and brain. Glia 21:259–268

    Article  PubMed  CAS  Google Scholar 

  • Saari JC, Teller DC, Crabb JW, Bredberg L (1985) Properties of an interpho toreceptor retinoid-binding protein from bovine retina. J Biol Chem 260:195–201

    PubMed  CAS  Google Scholar 

  • Sakmar TP, Franke RR, Khorana HG (1989) Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin. Proc Natl Acad Sci USA 86:8309–8313

    Article  PubMed  CAS  Google Scholar 

  • Salama SR, Cleves AE, Malehorn DE, Whitters EA, Bankaitis VA (1990) Cloning and characterization of Kluyveromyces lactis SEC14, a gene whose product stimulates secretory function in Saccharomyces cerevisiae. J Bacteriol 172:4510–4521

    PubMed  CAS  Google Scholar 

  • Sarthy V (1996) Cellular retinal-binding protein localization in cornea. Exp Eye Res 63:759–762

    Article  PubMed  CAS  Google Scholar 

  • Sato Y, Arai H, Miyata A, Tokita S, Yamamoto K, Tanabe T, Inoue K (1993) Primary structure of α-tocopherol transfer protein from rat liver. J Biol Chem 268:17705–17710

    PubMed  CAS  Google Scholar 

  • Sekai H, Decatur J, Nakanishi K, Eldred GE (1996) Ocular age pigment“A2-E”: an unprecedented pyridinium bisretinoid. J Am Chem Soc 118:1559–1560

    Article  Google Scholar 

  • Shen D, Jiang M, Wenshan H, Tal L, Salazar M, Fong HKW (1994) A human opsinrelated gene that encodes a retinal-binding protein. Biochemistry 33:13117–13125

    Article  PubMed  CAS  Google Scholar 

  • Simon A, Hellman U, Wernstedt C, Eriksson U (1995) The retinal pigment epithelial specific 11-cis-retinol dehydrogenase belongs to the family of short chain alcohol dehydrogenases. J Biol Chem 270:1107–1112

    Article  PubMed  CAS  Google Scholar 

  • Skinner HB, McGee TP, McMaster CR, Fry MR, Bell RM, Bankaitis VA (1995) The Saccharomyces cerevisiae phosphatidylisonitol-transfer protein effects a ligand dependent inhibition of choline-phosphate cytidylyltransferase activity. Proc Natl Acad Sci USA 92:112–116

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Ishiguro S-I, Tamai M (1993) Identification and immunohistochemistry of retinol dehydrogenase from bovine retinal pigment epithelium. Biochim Biophys Acta 1163:201–208

    Article  PubMed  CAS  Google Scholar 

  • Sun H, Gilbert DJ, Copeland NG, Jenkins NA, Nathans J (1997) Peropsin, a novel visual pigment-like protein located in the apical microvilli of the retinal pigment epithelium. Proc Natl Acad Sci USA 94:9893–9898

    Article  PubMed  CAS  Google Scholar 

  • Unger VM, Hargrave PA, Baldwin JM, Schertier GFX (1997) Arrangement of rhodopsin transmembrane α-helices. Nature 389:203–206

    Article  PubMed  CAS  Google Scholar 

  • Wald G (1968) Molecular basis of visual excitation. Science 162:230–239

    Article  PubMed  CAS  Google Scholar 

  • Wassell J, Boulton M (1997) A role for vitamin A in the formation of ocular lipofuscin. Br J Ophthalmol 81:911–918

    Article  PubMed  CAS  Google Scholar 

  • Williams AJ, Hunt DM, Bowmaker JK, Mollon JD (1992) The polymorphic photopigments of the marmoset: spectral tuning and genetic basis. EMBO J 11:2039–2045

    PubMed  CAS  Google Scholar 

  • Yamamoto S, Sippel KC, Berson EL, Dryja TP (1997) Defects in the rhodopsin kinase gene in the Oguchi form of stationary night blindness. Nat Genet 15:175–178

    Article  PubMed  CAS  Google Scholar 

  • Zhukovsky EA, Oprian DD (1989) Effect of carboxylic acid side chains on the absorption maximum of visual pigments. Science 246:928–930

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Saari, J.C. (1999). Retinoids in Mammalian Vision. In: Nau, H., Blaner, W.S. (eds) Retinoids. Handbook of Experimental Pharmacology, vol 139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58483-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58483-1_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63614-1

  • Online ISBN: 978-3-642-58483-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics