Skip to main content

Avian Embryo as Model for Retinoid Function in Early Development

  • Chapter
Retinoids

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 139))

Abstract

The importance of the micronutrient vitamin A throughout the life cycle has been well established in numerous studies (Moore 1957; Wolf 1984). It has more recently become quite clear that the requirement for vitamin A begins with embryonic life, and that retinoids, the vitamin A active forms that exert vitamin A function via their nuclear receptor, are critical signaling molecules during development, their absolute essentialness being best illustrated in the avian embryo model: vitamin A deficiency is embryolethal (DErsch and Zile 1993; Thompson 1969).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ang HL, Deltour L, Hayamizu TF, Zgombic-Knight M, Duester G (1996) Retinoic acid synthesis in mouse embryos during gastrulation and craniofacial development linked to class IV alcohol dehydrogenase gene expression. J Biol Chem 271:9526–9534

    Article  PubMed  CAS  Google Scholar 

  • Ang HL, Duester G (1997) Initiation of retinoid signaling in primitive streak mouse embryos: spatiotemporal expression patterns of receptors and metabolic enzymes for ligand synthesis. Dev Dyn 208:536–543

    Article  PubMed  CAS  Google Scholar 

  • Arceci RJ, King AA, Simon MC, Orkin SH, Wilson DB (1993) Mouse GATA-4: a retinoic acid-inducible GATA-binding transcription factor expressed in endodermally derived tissues and heart. Mol Cell Biol 13:2235–2246

    PubMed  CAS  Google Scholar 

  • Avantaggiato V, Acampora D, Tuorto F, Simeone A (1996) Retinoic acid induces stagespecific repatterning of the rostral central nervous system. Dev Biol 175:347–357

    Article  PubMed  CAS  Google Scholar 

  • Bates CJ (1983) Vitamin A in pregnancy and lactation. Proc Nutr Soc 42:65–79

    Article  PubMed  CAS  Google Scholar 

  • Bodmer R (1995) Heart development in Drosophila and its relationship to vertebrates. Trends Cardiovasc Med 5:21–28

    Article  PubMed  CAS  Google Scholar 

  • Blomhoff R (1994) Overview of vitamin A metabolism and function. In: Blomhoff R (ed) Vitamin A in health and disease. Dekker, New York, pp 1–35

    Google Scholar 

  • Boyd AS (1989) An overview of retinoids. Am J Med 86:568–574

    Article  PubMed  CAS  Google Scholar 

  • Boylan JF, Luftkin T, Achkar CC, Taneja R, Chambon P, Gudas LJ (1995) Targeted disruption of retinoic acid receptor alpha (RAR alpha) and RAR gamma results in receptor-specific alterations in retinoic acid-mediated differentiation and retinoic acid metabolism. Mol Cell Biol 15:843–851

    PubMed  CAS  Google Scholar 

  • Brockes JP (1989) Retinoids, homeobox genes, and limb morphogenesis. Neuron 2:1285–1294

    Article  PubMed  CAS  Google Scholar 

  • Bronner-Fraser M (1996) Methods in avian embryology, vol 51. In: Bronner-Fraser M (ed) Methods in cell biology. Academic, New York

    Google Scholar 

  • Chambon P (1993) The molecular and genetic dissection of the retinoid signaling pathway. Gene 135:223–228

    Article  PubMed  CAS  Google Scholar 

  • Chan A, Hanna M, Abbott M, Keane RJ (1996) Oral retinoids and pregnancy. Med J Aust 165:164–167

    PubMed  CAS  Google Scholar 

  • Chan-Thomas PS, Thompson RP, Robert B, Yacoub MH, Barton PJR (1993) Expression of homeobox genes Msx-1 (Hox-7) and Msx-2(Hox-8) during cardiac development in the chick. Dev Dyn 197:203–216

    Article  PubMed  CAS  Google Scholar 

  • Chen YP, Huang L, Russo AF, Solursh M (1992) Retinoic acid is enriched in Hensen’s node and is developmentally regulated in the early chicken embryo. Proc Natl Acad Sci USA 89:10056–10059

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Kostetskii I, Zile MH, Solursh M (1995) A comparative study of Msx-1 expression in early normal and vitamin A-deficient avian embryos. J Exp Zool 272: 299–310

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Dong D, Kostetskii I, Zile MH (1996) Hensen’s node from vitamin A-deficient quail embryo induces chick limb bud duplication and retains its normal asymmetric expression of sonic hedgehog (Shh). Dev Biol 173:256–264

    Article  PubMed  CAS  Google Scholar 

  • Cohlan SQ (1954) Congenital abnormalities in the rat produced by excessive intake of vitamin A during pregnancy. Pediatrics 13:556–567

    PubMed  CAS  Google Scholar 

  • Costaridis P, Horton C, Zeitlinger J, Holder N, Maden M (1996) Endogenous retinoids in the zebrafish embryo and adult. Dev Dyn 205:41–51

    Article  PubMed  CAS  Google Scholar 

  • Creech Kraft J, Schuh T, Juchau M, Kimelman D (1994) The retinoid X receptor ligand, 9-cis-retinoic acid, is a potential regulator of early Xenopus development. Proc Natl Acad Sci USA 91:3067–3071

    Article  Google Scholar 

  • Deltour L, Ang HL, Duester G (1996) Ethanol inhibition of retinoic acid synthesis as a potential mechanism for fetal alcohol syndrome. FASEB J 10:1050–1057

    PubMed  CAS  Google Scholar 

  • Dersch H, Zile MH (1993) Induction of normal cardiovascular development in the vitamin A-deprived quail embryo by natural retinoids. Dev Biol 160:424–433

    Article  PubMed  CAS  Google Scholar 

  • Dickman E, Smith SM (1996) Selective regulation of cardiomyocyte gene expression and cardiac morphogenesis by retinoic acid. Dev Dyn 206:39–48

    Article  PubMed  CAS  Google Scholar 

  • Dieterlen-Lievre F (1997) Symposium: current advances in avian embryology and incubation. Avian models in developmental biology. Poultry Sci 76:78–82

    CAS  Google Scholar 

  • Doevedans PA, Vanbilsen M (1996) Transcription factors and the cardiac gene programme. Int J Biochem Cell Biol 28:387–403

    Article  Google Scholar 

  • Dong D, Zile MH (1995) Endogenous retinoids in the early avian embryo. Biochem Biophys Res Commun 217:1026–1031

    Article  PubMed  CAS  Google Scholar 

  • Drager UC, Wagner E, McCaffery P (1998) Aldehyde dehydrogenase in the generation of retinoic acid in the developing vertebrate: a central role of the eye. J Nutr 128:463S-466S

    Google Scholar 

  • Duester G (1991) A hypothetical mechanism for fetal alcohol syndrome involving ethanol inhibition of retinoic acid synthesis at the alcohol dehydrogenase step. Alcohol Clin Exp Res 15:568–572

    Article  PubMed  CAS  Google Scholar 

  • Duester G (1994) Are ethanol-induced birth defects caused by functional retinoic acid deficiency? In: Blomhoff R (ed) Vitamin A in health and disease. Dekker, New York, p 343

    Google Scholar 

  • Duester G (1998) Alcohol dehydrogenase as a critical mediator of retinoic acid synthesis from vitamin A in the mouse embryo. J Nutr 128:459S-462S

    Google Scholar 

  • Duitsman PK, Cook LR, Tanumihardjo SA, Olson JA (1995) Vitamin A inadequacy in socioeconomically disadvantaged pregnant Iowan women as assessed by the modified relative dose response (MRDR) test. Nutr Res 15:1263–1276

    Article  CAS  Google Scholar 

  • Durston AJ, Timmermans JPM, Hage WJ, Hendriks HFJ, De Vries NJ, Heideveld M, Nieuwkoop PD (1989) Retinoic acid causes an anteroposterior transformation in the developing central nervous system. Nature 340:140–144

    Article  PubMed  CAS  Google Scholar 

  • Eichele G (1997) Retinoids: from hindbrain patterning to Parkinson disease. Trends Gen 13:343–345

    Article  CAS  Google Scholar 

  • Ellis CN, Voorhees JJ (1987) Etretinate therapy. J Am Acad Dermatol 16:267–291

    Article  PubMed  CAS  Google Scholar 

  • Evans SM, Yan W, Murillo MP, Ponce J, Papalopulu N (1995) tinman, a Drosophila homeobox gene required for heart and visceral mesoderm specification, may be represented by a family of genes in vertebrates: XNkx-2.3, a second vertebrate homologue of tinman. Development 121:3889–3899

    PubMed  CAS  Google Scholar 

  • Evans T (1997) Regulation of cardiac gene expression by GATA-4/5/6. Trends Cardiovasc Med 7:75–83

    Article  PubMed  CAS  Google Scholar 

  • Fell HB, Mellanby E (1953) Metaplasia produced in cultures of chick ectoderm by high vitamin A. J Physiol (Lond) 119:470–488

    CAS  Google Scholar 

  • Fisher M, Schoenwolf GC (1983) The use of early chick embryos in experimental embryology and teratology: improvements in standard procedures. Teratology 27:65–72

    Article  PubMed  CAS  Google Scholar 

  • Fishman MC, Chien KR (1997) Fashioning the vertebrate heart: earliest embryonic decisions. Development 124:2099–2117

    PubMed  CAS  Google Scholar 

  • Gale E, Prince V, Lumsden A, Clarke J, Holder N, Maden M (1996) Late effects of retinoic acid on neural crest and aspects of rhombomere identify. Development 122:783–794

    PubMed  CAS  Google Scholar 

  • Gerster H (1997) Vitamin A — functions, dietary requirements and safety in humans. Int J Vit Nutr Res 67:71–90

    CAS  Google Scholar 

  • Giguere V, Fawcett D, Luo J, Evans RM, Sucov HH (1996) Genetic analysis of the retinoid signal. Ann NY Acad Sci 785:12–22

    Article  PubMed  CAS  Google Scholar 

  • Goodman AB (1995) Chromosomal locations and modes of action of genes of the retinoid (Vitamin A) system support their involvement in the etiology of schizophrenia. Am J Med Genet (Neuropsychiatr Genet) 60:335–348

    Article  CAS  Google Scholar 

  • Goodman AB (1994) Retinoid dysregulation as a cause of schizophrenia. Am J Psychiatry 151:452–453

    PubMed  CAS  Google Scholar 

  • Goodman AB (1996) Congenital anomalies in relatives of schizophrenic probands may indicate a retinoid pathology. Schizophrenia Res 19:163–170

    Article  CAS  Google Scholar 

  • Grummer MA, Langhough RE, Zachman RD (1993) Maternal ethanol ingestion effects on fetal rat brain. Vitamin A as a model for fetal alcohol syndrome. Alcohol Clin Exp Res 17:592–597

    Article  PubMed  CAS  Google Scholar 

  • Gudas LJ, Sporn MB, Roberts AB (1994) Cellular biology and biochemistry of the retinoids. In: Sporn MB, Roberts AB, Goodman DS (eds) The retinoids: biology, chemistry, and medicine, 2nd edn. Raven, New York, pp 443–520

    Google Scholar 

  • Hale F (1937) Relation of maternal vitamin A deficiency to microphthalmia in pigs. Texas State. J Med 33:228–232

    Google Scholar 

  • Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92

    Article  Google Scholar 

  • Harvey RP (1996) NK-2 homeobox genes and heart development. Dev Biol 178: 203–216

    Article  PubMed  CAS  Google Scholar 

  • Heine UI, Roberts AB, Munoz EF, Roche NS, Sporn MB (1985) Effects of retinoid deficiency on the development of the heart and vascular system of the quail embryo. Virchows Arch [Cell Pathol] 50:135–152

    Article  CAS  Google Scholar 

  • Helms JA, Kim CH, Hu D, Minkoff R, Thaller C, Eichele G (1997) Sonic hedgehog participates in craniofacial morphogenesis and is down-regulated by teratogenic doses of retinoic acid. Dev Biol 187:25–35

    Article  PubMed  CAS  Google Scholar 

  • Henion PD, Weston JA (1994) Retinoic acid selectively promotes the survival and proliferation of neurogenic precursors in cultured neural crest cell populations. Dev Biol 161:243–250

    Article  PubMed  Google Scholar 

  • Hofmann C, Eichele G (1994) Retinoids in development. In: Sporn MB, Roberts AB, Goodman DS (eds) The retinoids: biology, chemistry, and medicine, 2nd edn. Raven, New York, pp 387–441

    Google Scholar 

  • Hoffman JIE (1995) Incidence of congenital heart disease: I. Postnatal incidence. Pediatr Cardiol 16:103–113

    Article  PubMed  CAS  Google Scholar 

  • Hogan BLM, Thaller C, Eichele G (1992) Evidence that Hensen’s node is a site of retinoic acid synthesis. Nature 359:237–241

    Article  PubMed  CAS  Google Scholar 

  • Hong WK, Itri LM (1994) Retinoids and human cancer. In: Sporn MB, Roberts AB, Goodman DS (eds) The retinoids: biology, chemistry and medicine, 2nd edn. Raven, New York, pp 597–630

    Google Scholar 

  • Horton C, Maden M (1995) Endogenous distribution of retinoids during normal development and teratogenesis in the mouse embryo. Dev Dyn 202:312–323

    Article  PubMed  CAS  Google Scholar 

  • Icardo JM (1996) Developmental biology of the heart. J Exp Zool 275:144–161

    Article  PubMed  CAS  Google Scholar 

  • Isaac A, Sargent MG, Cooke J (1997) Control of vertebrate left-right asymmetry by a Snail-related zinc finger gene. Science 275:1301–1304

    Article  PubMed  CAS  Google Scholar 

  • Jones KL, Smith DW, Ulleland CN, Streissguth AP (1973) Pattern of malformation in offspring of chronic alcoholic mothers. Lancet 7815:1267–1271

    Article  Google Scholar 

  • Kamm JJ, Ashenfelter KO, Ehmann CW (1984) Preclinical and clinical toxicology of selected retinoids. In: Sporn MB, Roberts AB, Goodman DS (eds) The retinoids. Academic, New York, pp 287–326

    Google Scholar 

  • Kastner P, Grondona JM, Mark M, Gansmuller A, Lemeur M, Decimo D, Vonesch J-L, Dolle P, Chambon P (1994) Genetic analysis of RXRα developmental function: convergence of RXR and RAR signaling pathways in heart and eye morphogenesis. Cell 78:987–1003

    Article  PubMed  CAS  Google Scholar 

  • Kern MJ, Argao EA, Potter SS (1995) Homeobox genes and heart development. Trends Cardiovasc Med 5:47–54

    Article  PubMed  CAS  Google Scholar 

  • Kimmel CA, Generoso WM, Thomas RD, Bakshi KS (1993) Contemporary issues in toxicology. A new frontier in understanding the mechanisms of developmental abnormalities. Toxicol Appl Pharmacol 119:159–165

    Article  PubMed  CAS  Google Scholar 

  • Kirby ML (1993) Cellular and molecular contributions of the cardiac neural crest to cardiovascular development. Trends Cardiovasc Med 3:18–23

    Article  PubMed  CAS  Google Scholar 

  • Kistler A, Hummler H (1985) Teratogenesis and reproductive safety evaluation of the retinoid etretin (1610-1670) Arch Toxicol 58:50–56

    Article  PubMed  CAS  Google Scholar 

  • Kochhar DM, Jiang H, Soprano DR, Harnish DC (1993) Early embryonic cell response in retinoid-induced teratogenesis. In: Livrea MA, Packer L (eds) Retinoids. Progress in research and clinical applications. Dekker, New York, pp 383–396

    Google Scholar 

  • Kochhar DM, Christian MS (1997) Tretinoin: a review of the nonclinical developmental toxicology experience. J Am Acad Dermatol 36:S47-S59

    Google Scholar 

  • Kostetskii I, Linask KL, Zile MH (1996) Vitamin A deficiency and the expression of retinoic acid receptors during cardiogenesis in early quail embryo. Roux’s Arch. Dev Biol 205:260–271

    CAS  Google Scholar 

  • Kostetskii I, Yuan SY, Kostetskaia E, Linask KK, Blanchet S, Seleiro E, Michaille JJ, Brickell P, Zile M (1998) Initial retinoid requirement for early avian development coincides with retinoid receptor coexpression in the precardiac fields and induction of normal cardiovascular development. Dev Dyn 213:188–198

    Article  PubMed  CAS  Google Scholar 

  • Lammer EJ (1988) Developmental toxicity of synthetic retinoids in humans. In: Liss AR (ed) Transplacental effects of fetal health, pp 193–202

    Google Scholar 

  • Lammer EJ, Chen DT, Hoar RM, Agnish ND, Benke PJ, Braun JT, Curry CJ, Fernhoff PM, Grix AW, Lott IT, Richard JM, Sun SC (1985) Retinoic acid embryopathy. N Engl J Med 313:837–841

    Article  PubMed  CAS  Google Scholar 

  • Laverriere AC, McNeil C, Mueller C, Poelmann RE, Burch JBE, Evans T (1994) GATA-4/5/6, a subfamily of three transcription factors transcribed in developing heart and gut. J Biol Chem 269:23177–23184

    PubMed  CAS  Google Scholar 

  • Leblanc BP, Stunnenberg HG (1995) 9-cis retinoic acid signaling: changing partners causes some excitement. Genes Dev 9:1811–1816

    Article  PubMed  CAS  Google Scholar 

  • LeDouarin NM (1969) Particularités du noyau interphasique chez la caille japonaise. Utilisation de ces particularités comme“marquage biologique”dans les recherches. Bull Biol Fr Belg 103:435–452

    CAS  Google Scholar 

  • LeDouarin NM, Dieterlen-Lie F, Teillet MAT (1995) Quail-chick transplantations. In: Moses PB (ed) Methods in cell biology, vol 51. Academic, New York, pp 23–59

    Google Scholar 

  • Levin M, Johnson RL, Stern CD, Kuehn M, Tabin C (1995) A molecular pathway determining left-right asymmetry in chick embryogenesis. Cell 82:803–814

    Article  PubMed  CAS  Google Scholar 

  • Levin M, Pagan S, Roberts DJ, Cooke J, Kuehn MR, Tabin CJ (1997) Left/right patterning signals and the independent regulation of different aspects of situs in the chick embryo. Dev Biol 189:57–67

    Article  PubMed  CAS  Google Scholar 

  • Lints TJ, Parsons LM, Hartley L, Lyons I, Harvey RP (1993) Nkx-2.5: a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants. Development 119:419–431

    PubMed  CAS  Google Scholar 

  • Little CD, Rongish BJ (1995) The extracellular matrix during heart development. Experientia 51:873–882

    Article  PubMed  CAS  Google Scholar 

  • Luo J, Pasceri P, Conlon RA, Rosant J, Giguere V (1995) Mice lacking all isoforms of retinoic acid receptor ß develop normally and are susceptible to the teratogenic effects of retinoic acid. Mech Dev 53:61–71

    Article  PubMed  CAS  Google Scholar 

  • Maden M, Gale E, Kostetskii I, Zile MH (1996) Vitamin A-deficient quail embryos have half a hindbrain and other neural defects. Curr Biol 6:417–426

    Article  PubMed  CAS  Google Scholar 

  • Maden M, Gale E, Zile MH (1998) The role of vitamin A in the development of the central nervous system. J Nutr 128:471S-475S

    Google Scholar 

  • Maden M, Graham A, Gale E, Rollinson C, Zile MH (1997) Positional apoptosis during vertebrate CNS development in the absence of endogenous retinoids. Development 124:2799–2805

    PubMed  CAS  Google Scholar 

  • Maden M (1994) Role of retinoids in embryonic development. In: Blomhoff R (ed) Vitamin A in health and disease. Dekker, New York, pp 289–322

    Google Scholar 

  • Maden M, Holder N (1992) Retinoic acid and development of the central nervous system. Bioessays 14:431–438

    Article  PubMed  CAS  Google Scholar 

  • Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, Evans RM (1995) The nuclear receptor superfamily: the second decade. Cell 83:835–839

    Article  PubMed  CAS  Google Scholar 

  • Marsh-Armstrong N, McCaffery P, Hyatt G, Alonso L, Dowling JE, Gilbert W, Drager UC (1995) Retinoic acid in the anteroposterior patterning of the zebrafish trunk. Roux’s Arch. Dev Biol 205:103–113

    CAS  Google Scholar 

  • Marshall H, Studer M, Popperl H, Aparicio S, Kuriowa A, Brenner S, Krumlauf R (1994) A conserved retinoic acid response element required for early expression of the homeobox gene Hoxb-1. Nature 370:567–571

    Article  PubMed  CAS  Google Scholar 

  • Mason KE (1935) Foetal death, prolonged gestation, and difficult parturition in the rat as a result of vitamin A deficiency. Am. J Anat 57:303–349

    Article  CAS  Google Scholar 

  • McCaffery P, Drager UC (1994) Hotspots of retinoic acid synthesis in the developing spinal cord. Proc Natl Acad Sci USA 91:7194–7197

    Article  PubMed  CAS  Google Scholar 

  • Moon RC, Mehta RG, Rao KVN (1994) Retinoids and cancer in experimental animals. In: Sporn MB, Roberts AB, Goodman DS (eds) The retinoids: biology, chemistry, and medicine, 2nd edn. Raven, New York, pp 573–595

    Google Scholar 

  • Moore T (1957) Vitamin A. Elsevier, New York

    Google Scholar 

  • Morriss GM (1972) Morphogenesis of the malformations induced in rat embryos by maternal hypervitaminosis A. J Anat 113:241–250

    PubMed  CAS  Google Scholar 

  • Morriss GM, Steele CE (1972) Comparison of the effects of retinal and retinoic acid on postimplantation rat embryos in vitro. Teratology 15:109–119

    Article  Google Scholar 

  • Morriss-Kay GM, Murphy P, Hill RE, Davidson DR (1991) Effects of retinoic acid excess on expression of Hox 2.9 and Krox-20 and of morphological segmentation in the hindbrain of mouse embryos. EMBO J 10:2985–2995

    PubMed  CAS  Google Scholar 

  • Nau H, Chahoud I, Dencker L, Lammer EJ, Scott WJ (1994) Teratogenicity of vitamin A and retinoids. In: Blomhoff R (ed) Vitamin A in health and disease. Dekker, New York, pp 615–664

    Google Scholar 

  • Osmond MK, Butler AJ, Voon FCT, Bellairs R (1991) The effects of retinoic acid on heart formation in the early chick embryo. Development 113:1405–1417

    PubMed  CAS  Google Scholar 

  • Pfahl M, Chytil F (1996) Regulation of metabolism by retinoic acid and its nuclear receptors. Annu Rev Nutr 16:257–283

    Article  PubMed  CAS  Google Scholar 

  • Pijnappel WWM, Hendriks HFJ, Folkers GE, Van Den Brink CE, Dekker EJ, Edelenbosch C, Van Der Saag PT, Durston AJ (1993) The retinoid ligand 4-oxoretinoic acid is a highly active modulator of positional specification. Nature 366:340–344

    Article  PubMed  CAS  Google Scholar 

  • Popperl H, Featherstone MS (1993) Identification of a retinoic acid response element upstream or the murine Hox-4.2 gene. Mol Cell Biol 13:257–265

    PubMed  CAS  Google Scholar 

  • Raner GM, Vax ADN, Coon MJ (1996) Metabolism of all-trans, 9-cis, and 13-cis isomers of retinal by purified isozymes of microsomal cytochrome P450 and mechanism-based inhibition of retinoid oxidation by citral. Mol Pharmacol 49:515–522

    PubMed  CAS  Google Scholar 

  • Roberts AB, Sporn MB (1984) Cellular biology and biochemistry of retinoids. In: Sporn MB, Roberts AB, Goodman, DS (eds) The retinoids, vol 2. Academic, Orlando, pp 209–286

    Google Scholar 

  • Rosa FW (1993) Retinoid embryopathy in humans. In: Koren G (ed) Retinoids in clinical practice: the risk-benefit ratio. Dekker, New York, pp 77–109

    Google Scholar 

  • Ruckman RN (1990) Cardiovascular defects associated with alcohol, retinoic acid, and other agents. Ann NY Acad Sci 588:281–288

    Article  PubMed  CAS  Google Scholar 

  • Rutledge JC, Generoso WM (1989) Fetal pathology produced by ethylene oxide treatment of the murine zygote. Teratology 39:563–572

    Article  PubMed  CAS  Google Scholar 

  • Schultheiss TM, Xydas S, Lassar AB (1995) Induction of avian cardiac myogenesis by anterior endoderm. Development 121:4203–4214

    PubMed  CAS  Google Scholar 

  • Scadding S, Maden M (1994) Retinoic acid gradients during limb regeneration. Dev Biol 162:608–617

    Article  PubMed  CAS  Google Scholar 

  • Selevan SG (1981) Design considerations in pregnancy outcome studies of occupational populations. Scand J Work Environ Health 7:76–82

    PubMed  Google Scholar 

  • Shalita AR (1988) Lipid and teratogenic effects of retinoids. J Am Acad Dermatol 19:197–198

    Article  PubMed  CAS  Google Scholar 

  • Shenai JP, Rush MG, Parker RA, Chytil F (1995) Sequential evaluation of plasma retinol-binding protein response to vitamin A administration in very-low-birth weight neonates. Biochem Mol Med 54:67–74

    Article  PubMed  CAS  Google Scholar 

  • Shenefelt RE (1972) Morphogenesis of malformations in hamsters caused by retinoic acid: relation to dose and stage at treatment. Teratology 5:103–118

    Article  PubMed  CAS  Google Scholar 

  • Shepard TH (1986) Human teratogenicity. Adv Pediatr 33:225–268

    PubMed  CAS  Google Scholar 

  • Smith SM (1994) Retinoic acid receptor isoform ß2is an early marker for alimentary tract and central nervous system positional specification in the chicken. Dev Dyn 200:14–15

    Article  PubMed  CAS  Google Scholar 

  • Smith SM, Dickman ED, Power SC, Lancman J (1998) Retinoids and their receptors in vertebrate embryogenesis. J Nutr 128:467S–470S

    PubMed  CAS  Google Scholar 

  • Smith SM, Dickman ED, Thompson RP, Sinning AR, Wunsch AM, Markwald RR (1997) Retinoic acid directs cardiac laterality and the expression of early markers of precardiac asymmetry. Dev Biol 182:162–171

    Article  PubMed  CAS  Google Scholar 

  • Smith SM, Eichele G (1991) Temporal and regional differences in the expression patterns of distinct retinoic acid receptor-ß-transcripts in the chick embryo. Development 111:245–252

    PubMed  CAS  Google Scholar 

  • Strauss JS, Cunningham WJ, Leyden JJ, Pochi PE, Shalita AR (1988) Isotretinoin and teratogenicity. J Am Acad Dermatol 19:353–354

    Article  PubMed  CAS  Google Scholar 

  • Studer M, Popperl H, Marshall H, Kuriowa A, Krumlauf R (1994) Role of conserved retinoic acid response element in rhombomere restriction of Hoxb-1. Science 265:1728–1732

    Article  PubMed  CAS  Google Scholar 

  • Sucov HM, Dyson E, Gumeringer CL, Price J, Chien KR, Evans RM (1994) RXRα mutant mice establish a genetic basis for vitamin A signaling in heart morphogenesis. Genes Dev 8:1007–1018

    Article  PubMed  CAS  Google Scholar 

  • Sulik KK (1984) Critical periods for alcohol teratogenesis in mice, with special reference to the gastrulation stage of embryogenesis. Mechanisms of alcohol damage in utero. Pitman, London, pp 124–141 (Ciba Foundation symposium 105)

    Google Scholar 

  • Tanaka M, Tamura K, Ide H (1996) Citral, an inhibitor of retinoic acid synthesis, modifies chick limb development. Dev Biol 175:239–247

    Article  PubMed  CAS  Google Scholar 

  • Teelmann K (1989) Retinoids: toxicology and teratogenicity to date. Pharmacol Ther 40:29–43

    Article  PubMed  CAS  Google Scholar 

  • Thaller C, Eichele G (1987) The identification and spatial distribution of retinoids in the developing chick limb bud. Nature 327:625–628

    Article  PubMed  CAS  Google Scholar 

  • Thaller C, Eichele G (1990) Isolation of 3,4-didehydroretinoic acid, a novel morphogenetic signal in the chick wing bud. Nature 345:815–819

    Article  PubMed  CAS  Google Scholar 

  • Thompson JN (1969) The role of vitamin A in reproduction. In: DeLuca HF, Suttie JW (eds) The Fat Soluble Vitamins. The University of Wisconsin, Madison, pp 267–281

    Google Scholar 

  • Thorogood P, Smith L, Nicol A, McGinty R, Garrod D (1982) Effects of vitamin A on the behaviour of migratory neural crest cells in vitro. J Cell Sci 57:331–350

    PubMed  CAS  Google Scholar 

  • Tsuda T, Philp N, Zile MH, Linask K (1996) Left-right asymmetric localization of flectin in the extracellular matrix during heart looping. Dev Biol 173:39–50

    Article  PubMed  CAS  Google Scholar 

  • Twal W, Roze L, Zile MH (1995) Anti-retinoic acid monoclonal antibody localizes all-trans-retinoic acid in target cells and blocks normal development in early quail embryo. Dev Biol 168:225–234

    Article  PubMed  CAS  Google Scholar 

  • Twal WO, Zile MH (1997) Retinoic acid reverses ethanol-induced cardiovascular abnormalities in quail embryos. Alcohol Clin Exp Res 21:1137–1143

    Article  PubMed  CAS  Google Scholar 

  • Underwood BA (1994) Vitamin A in human nutrition: public health considerations. In: Sporn MB, Roberts AB, Goodman DS (eds) The retinoids: biology, chemistry and medicine, 2nd edn. Raven, New York, pp 211–227

    Google Scholar 

  • Veghely PV, Osztovics M, Kardos G, Leisztner L, Szaszovszky E, Igali S, Imrei J (1978) The fetal alcohol syndrome: symptoms and pathogenesis. Acta Paediat Acad Sci Hung 19:171–189

    Google Scholar 

  • Wald G (1968) The molecular basis of visual excitation. Nature 219:800–807

    Article  PubMed  CAS  Google Scholar 

  • Wallingford JC, Underwood BA (1986) Vitamin A deficiency in pregnancy, lactation and the nursing child. In: Bauernfeind JC (ed) Vitamin A deficiency and its control Academic, Orlando, Fl, pp 101–152

    Google Scholar 

  • Wedden SE, Pang K, Eichele G (1989) Expression pattern of homeobox-containing genes during chick embryogenesis. Development 105:639–650

    PubMed  CAS  Google Scholar 

  • Wellik DM, DeLuca HF (1995) Retinol in addition to retinoic acid is required for successful gestation in vitamin A-deficient rats. Biol Reprod 53:1392–1397

    Article  PubMed  CAS  Google Scholar 

  • Wellik DM, DeLuca HF (1996) Metabolites of all-trans-retinol in day 10 conceptuses of vitamin A-deficient rats. Arch Biochem Biophys 330:355–362

    Article  PubMed  CAS  Google Scholar 

  • Wellik DM, Norback DH, DeLuca HF (1997) Retinol is specifically required during midgestation for neonatal survival. Am J Physiol 272 (Endocrinol Metab 35: E25–E29

    Google Scholar 

  • White JC, Clagett-Dame M (1996) Abnormal development of the optic cup, olfactory pit,cranial ganglia and anterior cardinal vein in vitamin A-deficient rat embryos. Soc Neurosci Abstr 22:990 part 2

    Google Scholar 

  • Wiens DJ, Mann TK, Fedderson DE, Rathmell WK, Franck BH (1992) Early heart development in the chick embryo: effects of isotretinoin on cell proliferation, α-actin synthesis, and development of contractions. Differentiation 51:105–112

    Article  PubMed  CAS  Google Scholar 

  • Wilcox AJ, Weinberg CR, Wehmann RE, Armstrong EG, Canfield RE, Nisula BC (1985) Measuring early pregnancy loss: Laboratory and field methods. Fertil Steril 44:366–374

    PubMed  CAS  Google Scholar 

  • Wilson JG (1977) Embryotoxicity of drugs in man. In: Wilson JG, Fraser FC (eds) Handbook of teratology. Plenum, New York, pp 309–355

    Google Scholar 

  • Wilson JG, Roth CB, Warkany J (1953) An analysis of the syndrome of malformations induced by maternal vitamin A deficiency. Effects of restoration of vitamin A at various times during gestation. Am. J Anat 92:189–217

    Article  CAS  Google Scholar 

  • Wilson JG, Warkany J (1949) Aortic arch and cardiac anomalies in the offspring of vitamin A deficient rats. Am. J Anat 85:113–155

    Article  CAS  Google Scholar 

  • Wolbach SB (1954) Effects of vitamin A deficiency and hypervitaminosis A in animals. In: Sebrell WH, Harris RS (eds) The vitamins, vol I. Academic, New York, pp 106–136

    Google Scholar 

  • Wolf G (1984) Multiple functions of vitamin A. Physiol Rev 64:873–938

    PubMed  CAS  Google Scholar 

  • Wood H, Gurman P, Morriss-Kay G (1994) Exposure to retinoic acid before or after the onset of somitogenesis reveals separate effects on rhombomeric segmentation and 3’ HoxB gene expression domains. Development 120:2279–2285

    PubMed  CAS  Google Scholar 

  • Wunsch AM, Little CD, Markvald RR (1994) Cardiac endothelial heterogeneity defines valvular development as demonstrated by the diverse expression of JB3, an antigen of the endocardial cushion tissue. Dev Biol 165:585–601

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto M, McCaffery P, Drager UC (1996) Influence of the choroid plexus on cerebellar development: analysis of retinoic acid synthesis. Dev. Brain Res 93:182–190

    Article  CAS  Google Scholar 

  • Zhang Z, Balmer JE, Lovlie A, Fromm SH, Blomhoff R (1996) Specific teratogenic effects of different retinoic acid isomers and analogs in the developing anterior central nervous system of zebrafish. Dev Dyn 206:73–86

    Article  PubMed  CAS  Google Scholar 

  • Zile MH (1992) Vitamin A homeostasis endangered by environmental pollutants. Proc Soc Exp Biol Med 201:141–153

    PubMed  CAS  Google Scholar 

  • Zile MH (1998) Vitamin A and embryonic development: an overview. J Nutr 128:455S–458S

    PubMed  CAS  Google Scholar 

  • Zile MH, Kostetskii I, Yuan S (1998) Vitamin A specifies heart asymmetry during avian cardiogenesis. FASEB J 12:A319

    Google Scholar 

  • Zile MH, Yuan S, Kostetskii I (1997) Expression patterns of retinoid receptors in early quail embryos are altered in vitamin A deficiency. FASEB J 11:A412

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zile, M.H. (1999). Avian Embryo as Model for Retinoid Function in Early Development. In: Nau, H., Blaner, W.S. (eds) Retinoids. Handbook of Experimental Pharmacology, vol 139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58483-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58483-1_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63614-1

  • Online ISBN: 978-3-642-58483-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics