Skip to main content

Transcriptional Regulation of the Desmin and SM22 Genes in Vascular Smooth Muscle Cells

  • Chapter
Book cover Tissue Repair and Fibrosis

Part of the book series: Current Topics in Pathology ((CT PATHOLOGY,volume 93))

Abstract

There are several stages in the differentiation of smooth-muscle cells (SMCs) (embryonic, fetal, prenatal and adult) and a number of genes are specifically activated at each stage. The factors regulating myogenesis in skeletal muscle responsible for determination and differentiation, members of the MyoD family, have been identified [23]. However, the transcriptional mechanisms regulating the various stages of determination and differentiation in vascular SMCs are still unknown. Our studies over the past few years have focused on the regulation of genes linked to the differentiation of this tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belaguli N, Schildmeyer LA, Schwartz RJ (1997) Organization and myogenic restricted expression of the murine serum response factor gene - a role for autoregulation. J Biol Chem 272:18222–18231

    Article  PubMed  CAS  Google Scholar 

  2. Catala F, Wanner R, Barton P, Cohen A, Wright W, Buckingham M (1995) A skeletal muscle-specific enhancer regulated by factors binding to E and CArG boxes is present in the promoter of the mouse myosin light-chain lA gene. Mol Cell Biol 15:4585–4596

    PubMed  CAS  Google Scholar 

  3. Chen CY, Schwartz RJ (1996) Recruitment of the tinman homolog Nkx-2.5 by serum response factor activates cardiac α-actin gene transcription. Mol Cell Biol 16:6372–6384

    PubMed  CAS  Google Scholar 

  4. Croissant JD, Kim J, Eichele G, Goering L, Lough J, Prywes R, Schwartz RJ (1996) Avian serum response factor expression restricted primarily to muscle cell lineages is required for α-actin gene transcription. Dev Biol 177:250–264

    Article  PubMed  CAS  Google Scholar 

  5. Duband JL, Gimona M, Scatena M, Sartore S, Small JV (1993) Calponin and SM22 as differentiation markers of smooth muscle: spatiotemporal distribution during avian embryonnic development. Differentiation 55:1–11

    Article  PubMed  CAS  Google Scholar 

  6. Hautman MB, Owen GK (1997) A transforming growth factor β (TGFβ) control element drives TGFß-induced stimulation of smooth muscle α-actin gene expression in concert with two CArG elements. J Biol Chem 272:10948–10956

    Article  Google Scholar 

  7. Herring BP, Smith AF (1996) Telokin expression is mediated by a smooth muscle cell-specific promoter. Am J Physiol 270:C1656–1665

    PubMed  CAS  Google Scholar 

  8. Kelm RJ, Siquan S Jr, Strauch AR, Gtz MJ (1996) Repression of transcriptional enhancer factor-1 and activator protein-1 -dependent enhancer activity by vascular actin single stranded DNA-binding factor 2. J Biol Chem 271:24278–24285

    Article  PubMed  CAS  Google Scholar 

  9. Kim S, Ip HS, Lu MM, Clendenin C, Parmacek MS (1997) A serum response factor-dependent transcriptional regulatory program identifies distinct smooth muscle cell lineages. Mol Cell Biol 17:2266–2278

    PubMed  CAS  Google Scholar 

  10. Kuisk IR, Li H, Tran D, Capetanaki Y (1996) A single MEF2 site governs desmin transcription in both heart and skeletal muscle during mouse embryogenesis. Dev Biol 174: 1–13

    Article  PubMed  CAS  Google Scholar 

  11. Li L, Miano JM, Mercer B, Olson EN (1996) Expression of the SM22a promoter in transgenic mice provides evidence for distinct transcriptional regulatory programs in vascular and visceral smooth muscle cells. J Cell Biol 132:849–859

    Article  PubMed  CAS  Google Scholar 

  12. Li Z, Lillienbaum A, Butler-Browne G, Paulin D (1989) Human desmin coding gene: complete nucleotide sequence, characterization and regulation of expression during myogenesis and development. Gene (Amst) 78:243–254

    Article  CAS  Google Scholar 

  13. Li Z, Paulin D (1993) Different factors interact with myoblast-specific and myotube-specific enhancer regions of the human desmin gene. J Biol Chem 268:10403–10415

    PubMed  CAS  Google Scholar 

  14. Li Z, Marchand P, Humber J, Babinet C, Paulin D (1993) Desmin sequence elements regulating skeletal muscle-specific expression in transgenic mice. Development 117: 947–959

    PubMed  CAS  Google Scholar 

  15. Li Z, Collucci-Guyon E, Pinçon-Raymond M, Mericskay M, Pournin S, Paulin D, Babinet C (1996) Cardiovascular lesions and skeletal myopathy in mice lacking desmin. Dev Biol 175: 362–366

    Article  PubMed  CAS  Google Scholar 

  16. Li Z, Mericskay M, Agbulut O, Butler-Browne G, Carlsson L, Thornell L-E, Babinet C, Paulin D (1997) Desmin is essential for the tensile strength and integrity of myofibrils but not for myogenic commitment, differentiation and fusion of skeletal muscle. J Cell Biol 139: 129–144

    Article  PubMed  CAS  Google Scholar 

  17. Madsen CS, Regan CP, Owens GK (1997) Interaction of CArG elements and a GC-rich repressor element in transcriptional regulation of the smooth muscle myosin heavy chain in vascular smooth muscle cells. J Biol Chem 272:29842–29851

    Article  PubMed  CAS  Google Scholar 

  18. Moessler H, Mericskay M, Li Z, Nagl S, Paulin D, Small JV (1996) The SM22 promoter directs tissue-specific expression in arterial but not venous nor visceral smooth muscle cells in transgenic mice. Development 122:415–425

    Google Scholar 

  19. Molkentin JD, Black BL, Martin JF, Olson EN (1995) Cooperative activation of muscle gene transcription by MEF2 and myogenic bHLH proteins. Cell 83:1125–1136

    Article  PubMed  CAS  Google Scholar 

  20. Momiyama T, Hayashi K, Obata H, Chimori Y, Nishida T, Kamiike W, Matsuda H, Sobue K (1998) Functional involvement of serum response factor in the transcriptional regulation of caldesmon gene. Biochem Biophys Res Commun 242:429–435

    Article  PubMed  CAS  Google Scholar 

  21. Obata H, Hayashi K, Nishida W, Momiyama T, Uchida A, Ochi T, Sobue K (1997) Smooth muscle cell phenotype-dependent transcriptional regulation of the al integrin gene. J Biol Chem 272:26643–26652

    Article  PubMed  CAS  Google Scholar 

  22. Schwartz SM, deBlois D, O’Brien ERM (1995) The intima: soil for atherosclerosis and restenosis. Circ Res 77:445–465

    Article  PubMed  CAS  Google Scholar 

  23. Tajbakhsh S, Cossu G (1997) Establishing myogenic identity during somatogenesis. Curr Opin Genet Dev 7:634–641

    Article  PubMed  CAS  Google Scholar 

  24. Thornell L-E, Carlsson L, Li Z, Mericskay M, Paulin D (1997) Null mutation in the desmin gene gives rise to a cardiomyopathy. J Mol Cell Cardiol 29:2107

    Article  PubMed  CAS  Google Scholar 

  25. Treisman R (1994) Ternary complex factors: growth factor regulated transcriptional activators. Curr Biol 4:96–101

    CAS  Google Scholar 

  26. Liu X, Wu H, Byrne M, Krane S, Jaenisch R (1997) Type III collagen is crucial for collagen I fibrillogenesis and for normal cardiovascular development. Proc Natl Acad Sci U S A 94:1852–1856

    Article  PubMed  CAS  Google Scholar 

  27. Pereira L, Andrikopoulos K, Tian J, Lee SY, Keene DR, Ono R, Reinhardt DP, Sakai LY, Biery NJ, Bunton T, Dietz HC, Ramirez F (1997) Targetting of the gene encoding fibrillin-1 recapitulates the vascular aspect of Marfan syndrome. Nat Genet 17:218–222

    Article  PubMed  CAS  Google Scholar 

  28. Gardner H, Kreidberg J, Koteliansky V, Jaenisch R (1996) Deletion of integrin alpha 1 by homologous recombination permits normal murine development but gives rise to a specific deficit in cell adhesion. Dev Biol 175:301–313

    Article  PubMed  CAS  Google Scholar 

  29. Gurtner GC, Davis V, Li H, McCoy MJ, Sharpe A, Cybulsky MI (1995) Targeted disruption of the murine VCAM1 gene: essential role of VCAM-1 in chorioallantoic fusion and placentation. Genes Dev 9:1–14

    Article  PubMed  CAS  Google Scholar 

  30. Kwee L, Baldwin HS, Shen HM, Stewart CL, Buck C, Buck CA, Labow MA (1995) Defective development of the embryonic and extraembryonic circulatory systems in vascular cell adhesion molecule (VCAM-1) deficient mice. Development 121:489–503

    PubMed  CAS  Google Scholar 

  31. Yang JT, Rayburn H, Hynes RO (1995) Cell adhesion events mediated by alpha 4 integrins are essential in placental and cardiac development. Development 121:549–560

    PubMed  CAS  Google Scholar 

  32. Fong GH, Rossant J, Gertsenstein M, Breitman ML (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376:66–70

    Article  PubMed  CAS  Google Scholar 

  33. Shalaby F, Ho J, Stanford WL, Fischer KD, Schuh AC, Schwartz L, Bernstein A, Rossant J (1997) A requirement for Flkl in primitive and definitive hematopoiesis and vasculogenesis. Cell 89: 981–990

    Article  PubMed  CAS  Google Scholar 

  34. Sato TN, Tozawa Y, Deutsch U, Wolburg-Buchholz K, Fujiwara Y, Gendron-Maguire M, Gridley T, Wolburg H, Risau W, Qin Y (1995) Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 376:70–74

    Article  PubMed  CAS  Google Scholar 

  35. Soriano P (1994) Abnormal kidney development and hematological disorders in PDGF beta-receptor mutant mice. Genes Dev 8:1888–1896

    Article  PubMed  CAS  Google Scholar 

  36. Offermanns S, Mancino V, Revel JP, Simon MI (1997) Vascular system defects and impaired cell chemokinesis as a result of Galphal3 deficiency. Science 275:533–536

    Article  PubMed  CAS  Google Scholar 

  37. Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C, Pawling J, Moons L, Collen D, Risau W, Nagy A (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380:435–439

    Article  PubMed  CAS  Google Scholar 

  38. Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’Shea KS, Powell-Braxton L, Hillan KJ, Moore MW (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380:439–442

    Article  PubMed  CAS  Google Scholar 

  39. Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN, Yancopoulos GD (1996) Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87:1171–1180

    Article  PubMed  CAS  Google Scholar 

  40. Dickson MC, Martin JS, Cousins FM, Kulkarni AB, Karlsson S, Akhurst RJ (1995) Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice. Development 121:1845–1854

    PubMed  CAS  Google Scholar 

  41. Lindahl P, Johansson BR, Leveen P, Betsholtz C (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277:242–245

    Article  PubMed  CAS  Google Scholar 

  42. Bugge TH, Xiao Q, Kombrinck KW, Flick MJ, Holmback K, Danton MJ, Colbert MC, Witte DP, Fujikawa K, Davie EW, Degen JL (1996) Fatal embryonic bleeding events in mice lacking tissue factor, the cell-associated initiator of blood coagulation. Proc Natl Acad Sci USA 93:6258–6263

    Article  PubMed  CAS  Google Scholar 

  43. Carmeliet P, Mackman N, Moons L, Luther T, Gressens P, Van Vlaenderen I, Demunck H, Kasper M, Breier G, Evrard P, Muller M, Risau W, Edgington T, Collen D (1996) Role of tissue factor in embryonic blood vessel development. Nature 383:73–75

    Article  PubMed  CAS  Google Scholar 

  44. Cui J, O’Shea KS, Purkayastha A, Saunders TL, Ginsburg D (1996) Fatal haemorrhage and incomplete block to embryogenesis in mice lacking coagulation factor V. Nature 384:66–68

    Article  PubMed  CAS  Google Scholar 

  45. Rosen ED, Chan JC, Idusogie E, Clotman F, Vlasuk G, Luther T, Jalbert LR, Albrecht S, Zhong L, Lissens A, Schoonjans L, Moons L, Collen D, Castellino FJ, Carmeliet P (1997) Mice lacking factor VII develop normally but suffer fatal perinatal bleeding. Nature 390: 290–294

    Article  PubMed  CAS  Google Scholar 

  46. Carmeliet P, Moons L, Ploplis V, Plow E, Collen D (1997) Impaired arterial neointima formation in mice with disruption of the plasminogen gene. J Clin Invest 99:200–208

    Article  PubMed  CAS  Google Scholar 

  47. Kuo CT, Veselits ML, Barton KP, Lu MM, Clendenin C, Leiden JM (1997) The LKLF transcription factor is required for normal tunica media formation and blood vessel stabilization during murine embryogenesis. Genes Dev 11:2996–3006

    Article  PubMed  CAS  Google Scholar 

  48. Lin Q, Schwarz J, Bucana C, Olson EN (1997) Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 276:1404–1407

    Article  PubMed  CAS  Google Scholar 

  49. Gnarra JR, Ward JM, Porter FD, Wagner JR, Devor DE, Grinberg A, Emmert-Buck MR, Westphal H, Klausner RD, Linehan WM (1997) Defective placental vasculogenesis causes embryonic lethality in VHL-deficient mice. Proc Natl Acad Sci USA 94:9102–9107

    Article  PubMed  CAS  Google Scholar 

  50. Smith JD, Breslow JL (1997) The emergence of mouse models of atherosclerosis and their relevance to clinical research. J Internal Med 242:99–109

    Article  PubMed  CAS  Google Scholar 

  51. Williamson R, Lee D, Hagaman J, Maeda N (1992) Marked reduction of high density lipoprotein cholesterol in mice genetically modified to lack apolipoprotein A-I. Proc Natl Acad Sci U S A 89:7134–7138

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mericskay, M., Li, Z., Paulin, D. (1999). Transcriptional Regulation of the Desmin and SM22 Genes in Vascular Smooth Muscle Cells. In: Desmoulière, A., Tuchweber, B. (eds) Tissue Repair and Fibrosis. Current Topics in Pathology, vol 93. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58456-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58456-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63603-5

  • Online ISBN: 978-3-642-58456-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics