Skip to main content

Some Historical and Philosophical Reflections on the Myofibroblast Concept

  • Chapter
Book cover Tissue Repair and Fibrosis

Part of the book series: Current Topics in Pathology ((CT PATHOLOGY,volume 93))

Abstract

The phenomena of wound contraction and scar retraction have been known since the old ages (for review see [29]). In the first part of our century, the work of A. Carrel and P. Lecomte DU NoüY contributed to the notion that the forces producing wound contraction are generated within the granulation tissue itself [5]. These forces were generally considered to depend on extracellular-matrix rearrangements; however, M. Abercrombie and coworkers reported in the 1950s that fibroblasts exert tractional forces in vitro [1]. Similarly, H. Hoffmann-Beerling showed that the addition of adenosine triphosphate (ATP) to permeabilized fibroblasts in culture produces the contraction of their cytoplasm [22]. In this context, and in the context of emerging work on cytoskeleton morphology and function [4], the ultrastructural observation made in our laboratory in 1971 showed that during granulation tissue evolution, fibroblasts acquire smooth-muscle (SM) cell features, such as the presence of cytoplasmic microfilament bundles [17], allowing the proposition that these cells are the source of the force producing wound contraction, and probably connective-tissue retraction during a fibrotic phenomena. Shortly thereafter, it was shown that strips of granulation tissue isolated and placed in a pharmacological bath would contract and relax under the influence of substances that are notoriously capable of contracting and relaxing SM cells [18, 28]. It is noteworthy (particularly because this observation has never been developed) that granulation tissues from different locations respond differently to the same agonist or antagonist stimulus, suggesting that the capacity of reacting with contraction to a given stimulus by fibroblastic cells depends on their location [18]. The term myofibroblast was suggested for this modified and possibly contractile fibroblast [28].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abercrombie M, Flint MH, James DW (1956) Wound contraction in relation to collagen formation is scorbutic guinea pigs. J Embryol Exp Morphol 4:167–175

    Google Scholar 

  2. Adler KB, Low RB, Leslie KO, Mitchell J, Evans JN (1989) Biology of disease. Contractile cells in normal and fibrotic lung. Lab Invest 60:473–485

    PubMed  CAS  Google Scholar 

  3. Blankesteijn WM, Essers-Janssen YPG, Verluyten MJA, Daemen MJA, Smits JFM (1997) A homologue of Drosophila tisse polarity gene frizzled is expressed in migrating myofibroblasts in the infarcted rat heart. Nat Med 3:541–544

    Article  PubMed  CAS  Google Scholar 

  4. Bray D (1973) Cytoplasmic actin: a comparative study. In: Gordon J (ed) Cold Spring Harbor symposia on quantitative biology: the mechanisms of muscle contraction, vol 37. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 567–571

    Google Scholar 

  5. Carrel A, Hartmann A (1916) Cicatrization of wounds. I. The relation between the size and the rate if its cicatrization. J Exp Med 24:429–450

    Article  PubMed  CAS  Google Scholar 

  6. Castoriadis C (1997) Fait et à Faire. Les Carrefours du Labyrinthe V, Seuil, Paris, pp 233

    Google Scholar 

  7. Cavalli-Sforza LF (1997) Qui sommes-nous? Flammarion, Paris, pp 295–296

    Google Scholar 

  8. Chiavegato A, Bochaton-Piallat ML, D’Amore E, Sartore S, Gabbiani G (1995) Expression of myosin heavy chain isoforms in mammary epithelial cells in myofibroblasts from different fibrotic settings during neoplasia. Virchows Arch 426:77–86

    Article  PubMed  CAS  Google Scholar 

  9. Czernobilsky B, Shezen E, Lifschitz-Mercer B, Fogel M, Luzon A, Jacob N, Skalli O, Gabbiani G (1989) Alpha smooth muscle actin (α-SM actin) in normal human ovaries, in ovarian stromal hyperplasia and in ovarian neoplasma. Virchows Arch B Cell Pathol 57:55–61

    Article  CAS  Google Scholar 

  10. Darby I, Skalli O, Gabbiani G (1990) α-smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Lab Invest 63:21–29

    PubMed  CAS  Google Scholar 

  11. Desmoulière A, Gabbiani G (1994) Modulation of fibroblastic cytoskeletal features during pathological situations: the role of extracellular matrix and cytokines. Cell Motil Cytoskeleton 29:195–203

    Article  PubMed  Google Scholar 

  12. Desmoulière A, Redard M, Darby I, Gabbiani G (1995) Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am J Pathol 146:56–66

    PubMed  Google Scholar 

  13. Diamond JR, van Goor H, Ding G, Engelmyer E (1995) Myofibroblasts in experimental hydronephrosis. Am J Pathol 146:121–129

    PubMed  CAS  Google Scholar 

  14. Estes JM, Vande Berg JS, Adzick NS, MacGillivray TE, Desmoulière A, Gabbiani G (1994) Phenotypic and functional features of myofibroblasts in sheep fetal wounds. Differentiation 56:173–181

    Article  PubMed  CAS  Google Scholar 

  15. Evans JN, Adler KB (1981) The lung strip: evaluation of a method to study contractility of pulmonary parenchyma. Exp Lung Res 2:187–195

    Article  PubMed  CAS  Google Scholar 

  16. Friedman SL (1993) The cellular basis of hepatic fibrosis. Mechanisms and treatment strategies. N Engl J Med 328:1828–1835

    Article  PubMed  CAS  Google Scholar 

  17. Gabbiani G, Ryan GB, Majno G (1971) Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia 27:549–550

    Article  PubMed  CAS  Google Scholar 

  18. Gabbiani G, Hirschel BJ, Ryan GB, Statkov PR, Majno G (1972) Granulation tissue as a contractile organ. A study of structure and function. Exp Med 135:719–734

    Article  CAS  Google Scholar 

  19. Gabbiani G, Majno G (1972) Dupuytren’s contracture: fibroblast contraction. Am J Pathol 66:131–146

    PubMed  CAS  Google Scholar 

  20. Gabbiani G, Le Lous M, Bailey AJ, Bazin S, Delaunay A (1976) Collagen and myofibroblasts of granulation tissue. A chemical, ultrastructural and immunologic study. Virchows Arch B Cell Pathol 21:133–145

    PubMed  CAS  Google Scholar 

  21. Gabbiani G, Schmid E, Winter S, Chaponnier C, de Chastonay C, Vandekerckhove J, Weber K, Franke WW (1981) Vascular smooth muscle cells differ from other smooth muscle cells: predominance of vimentin filaments and a specific α-type actin. Proc Natl Acad Sci U S A 78: 298–302

    Article  PubMed  CAS  Google Scholar 

  22. Hoffmann-Beerling H (1954) Adenosintriphosphat als betriebsstoff von zellbewegungen. Biochim Biophys Acta 14:182–194

    Article  Google Scholar 

  23. Johnson RJ, Iida H, Alpers CE, Majesky MW, Schwartz SM, Pritzl P, Gordon K, Gown AM (1991) Expression of smooth muscle cell phenotype by rat mesangial cell sin immune complex nephritis. J Clin Invest 87:847–858

    Article  PubMed  CAS  Google Scholar 

  24. Kapanci Y, Assimacopoulos A, Irlé C, Zwahlen A, Gabbiani G (1974) “Contractile interstitial cells” in pulmonary septa. J Cell Biol 60:375–392

    Article  PubMed  CAS  Google Scholar 

  25. Kapanci Y, Ribaux C, Chaponnier C, Gabbiani G (1992) Cytoskeletal features of alveolar myofibroblasts and pericytes in normal human and rat lung. J Histochem Cytochem 40:1955–1963

    Article  PubMed  CAS  Google Scholar 

  26. Lazard D, Sastre X, Frid MG, Glukhova MA, Thiery JP, Koteliansky VE (1993) Expression of smooth muscle-specific proteins in myoepithelium and stromal myofibroblasts of normal and malignant human breast. Proc Natl Acad Sci U S A 90:999–1003

    Article  PubMed  CAS  Google Scholar 

  27. Low RB, Chaponnier C, Gabbiani G (1981) Organization of actin in epithelial cells during regenerative and neoplastic conditions. Correlation of morphologic, immunofluorescent, and biochemical findings. Lab Invest 44:359–367

    PubMed  CAS  Google Scholar 

  28. Majno G, Gabbiani G, Hirschel BJ, Ryan GB, Statkov PR (1971) Contraction of granulation tissue in vitro: similarity to smooth muscle. Science 173:548–550

    Article  PubMed  CAS  Google Scholar 

  29. Majno G (1975) The healing hand: man and wound in the ancient world. Harvard University Press, Cambridge

    Google Scholar 

  30. Ramadori G, Veit T, Schwögler S, Dienes HP, Knittel T, Rieder H, Meyer KH (1990) Expression of the gene of α-smooth muscle-actin isoform in rat liver and in rat fat-storing (Ito) cells. Virchows Arch B Cell Pathol 59:349–357

    Article  CAS  Google Scholar 

  31. Ronnov-Jessen L, Petersen OW, Koteliansky VE, Bissell MJ (1995) The origin of the myofibroblasts in breast cancer. J Clin Invest 95:859–873

    Article  PubMed  CAS  Google Scholar 

  32. Sappino AP, Dietrich PY, Widgren S, Gabbiani G (1989) Colonic pericryptal fibroblasts. Differentiation pattern in embryogenesis and phenotypic modulation in epithelial proliferative lesions. Virchows Arch A Pathol Anat 415:551–557

    Article  CAS  Google Scholar 

  33. Sappino AP, Schürch W, Gabbiani G (1990) Differentiation repertoire of fibroblastic cells: expression of cytoskeletal proteins as marker of phenotypic modulation. Lab Invest 63:144–161

    PubMed  CAS  Google Scholar 

  34. Schmitt-Gräff A, Krüger S, Bochard F, Gabbiani G, Denk H (1991) Modulation of alpha smooth muscle actin and desmin expression in perisinusoidal cells of normal and diseased human livers. Am J Pathol 138:1233–1242

    PubMed  Google Scholar 

  35. Schmitt-Gräff A, Desmoulière A, Gabbiani G (1994) Heterogeneity of myofibroblast phenotypic features: an example of fibroblastic cell plasticity. Virchows Arch 425:3–24

    Article  PubMed  Google Scholar 

  36. Schürch W, Seemayer TA, Lagacé R (1981) Stromal myofibroblasts in primary invasive and metastatic carcinoma. A combined immunological, light and electron microscopic study. Virchows Arch A 391:125–139

    Google Scholar 

  37. Seyle H (1964) From dream to discovery. Mc Gow-Hill, New York. pp 89

    Google Scholar 

  38. Skalli O, Ropraz P, Trzeciak A, Benzonana G, Gillessen D, Gabbiani G (1986) A monoclonal antibody against a-smooth muscle actin: a new probe for smooth muscle differentiation. J Cell Biol 103:2787–2796

    Article  PubMed  CAS  Google Scholar 

  39. Sun Y, Weber KT (1996) Angiotensin converting enzyme and myofibroblasts during tissue repair in the rat heart. J Mol Cell Cardiol 28:851–858

    Article  PubMed  CAS  Google Scholar 

  40. Zhang K, Rekhter MD, Gordon D, Phan SH (1994) Myofibroblasts and their role in lung collagen gene expression during pulmonary during pulmonary fibrosis. A combined immunohistochemical and in situ hybridization study. Am J Pathol 145:114–125

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gabbiani, G. (1999). Some Historical and Philosophical Reflections on the Myofibroblast Concept. In: Desmoulière, A., Tuchweber, B. (eds) Tissue Repair and Fibrosis. Current Topics in Pathology, vol 93. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58456-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58456-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63603-5

  • Online ISBN: 978-3-642-58456-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics