Skip to main content

Cytoplasmic Inorganic Pyrophosphatase

  • Chapter
Inorganic Polyphosphates

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 23))

Abstract

Pyrophosphate (PPi) is the smallest member of the polyphosphate family and is formed by two phosphate (Pi) residues linked by a phosphoanhydride bond. A specific enzyme hydrolyzing PPi to Pi was discovered in animal tissues in 1928 (Kay) and later in a great many other organisms and cell types, in virtually all in which it has been sought. Its initial name was “pyrophosphatase”, later elongated with a questionable “inorganic”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Avaeva S, Ignatov P, Kurilova S, Nazarova T, Rodina E, Vorobyeva N, Oganessyan V, Harutyunyan E (1996a) Escherichia coli inorganic pyrophosphatase: site-directed mutagenesis of the metal binding sites. FEBS Lett 399: 99–102

    Article  CAS  Google Scholar 

  • Avaeva SM, Rodina EV, Kurilova SA, Nazarove TI, Vorobyeva NN (1996b) Effect of D42N substitution in Escherichia coli inorganic pyrophosphatase on catalytic activity and Mg2+ binding. FEBS Lett 392: 91–94

    Article  CAS  Google Scholar 

  • Avaeva S, Kurilova S, Nazarova T, Rodina E, Vorobyeva N, Sklyankina V, Grigorjeva O, Harutyunyan E, Oganessyan V, Wilson K, Dauter Z, Huber R, Mather T (1997) Crystal structure of Escherichia coli inorganic pyrophosphatase complexed with SO 2-4 . Ligand-induced molecular asymmetry. FEBS Lett 410: 502–508

    Article  PubMed  CAS  Google Scholar 

  • Baltscheffsky H, Baltscheffsky M, Nadanaciva S, Persson B, Schultz A (1997) Possible origin and evolution of inorganic pyrophosphatases. In: Lahti R (ed) Ist Int Meet on Inorganic pyrophosphatases, University of Turku, Turku, pp 1–3

    Google Scholar 

  • Baltscheffsky M, Baltscheffsky H (1992) Inorganic pyrophosphate and inorganic pyrophosphatase. In: Ernster L (ed) Molecular mechanisms in bioenergetics. Elsevier, Amsterdam, pp 331–348

    Chapter  Google Scholar 

  • Baykov AA, Shestakov AS (1992) Two pathways of pyrophosphate hydrolysis and synthesis by yeast inorganic pyrophosphatase. Eur J Biochem 206: 463–470

    Article  PubMed  CAS  Google Scholar 

  • Baykov AA, Tam-Villoslado JJ, Avaeva SM (1979) Fluoride inhibition of inorganic pyrophosphatase. IV Evidence for metal participation in the active center and a four-site model of metal effect on catalysis. Biochim Biophys Acta 569: 228–238

    Article  PubMed  CAS  Google Scholar 

  • Baykov AA, Shestakov AS, Kasho VN, Vener AV, Ivanov AH (1990) Kinetics and thermodynamics of catalysis by the inorganic pyrophosphatase of Escherichia coli in both directions. Eur J Biochem 194: 879–887

    Article  PubMed  CAS  Google Scholar 

  • Baykov AA, Alexandrov AP, Smirnova IN (1992) A two-step mechanism of fluoride inhibition of rat liver inorganic pyrophosphatase. Arch Biochem Biophys 294: 238–243

    Article  PubMed  CAS  Google Scholar 

  • Baykov AA, Dudarenkov VY, Käpylä J, Salminen T, Hyytiä T, Kasho VN, Husgafvel S, Cooperman BS, Goldman A, Lahti R (1995) Dissociation of hexameric Escherichia coli inorganic pyrophosphatase into trimers on His-136→G1n or His-140→G1n substitutions and its effect on enzyme catalytic properties. J Biol Chem 270: 30804–30812

    Article  PubMed  CAS  Google Scholar 

  • Baykov AA, Hyytiä T, Volk SE, Kasho VN, Vener AV, Goldman A, Lahti R, Cooperman BS (1996) Catalysis by Escherichia coli inorganic pyrophosphatase: pH and Mg2+ dependence. Biochemistry 35: 4655–4661

    Article  PubMed  CAS  Google Scholar 

  • Beese LS, Steitz TA (1991) Structural basis for the 3’-5’ exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. EMBO J 10: 25–33

    PubMed  CAS  Google Scholar 

  • Benkovic SJ, Schray KJ (1973) Chemical basis of biological phosphoryl transfer. In: Boyer PD (ed) The enzymes vol 8, 3rd edn. Academic Press, New York, pp 201–237

    Google Scholar 

  • Borshchik IB, Magretova NN, Chernyak VY, Sklyankina VA, Avaeva SM (1986) Structural organization of E. coli inorganic pyrophosphatase. Biokhimiya 51: 1484–1489

    CAS  Google Scholar 

  • Breinig JB, Jones MM (1963) The effect of coordination of the reactivity of aromatic ligands. VII. Specific ion effects on diazo coupling rates. J Org Chem 28: 852–854

    Article  CAS  Google Scholar 

  • Bunick G, McKenna GP, Colton R, Voet D (1974) The X-ray structure of yeast inorganic pyrophosphatase, crystal properties. J Biol Chem 249: 4647–4649

    PubMed  CAS  Google Scholar 

  • Burland V, Plunkett G II, Sofia HJ, Daniels DC, Blattner FR (1995) Analysis of the E. coli genome VI: DNA sequence of the region from 92.8 through 100 minutes. Nucleic Acids Res 23: 2105–2119

    Article  PubMed  CAS  Google Scholar 

  • Butler LG (1971) Yeast and other inorganic pyrophosphatases. In: Boyer PD (ed) The enzymes, vol 4, 3rd edn. Academic Press, New York, pp 529–541

    Google Scholar 

  • Chirgadze NY, Kuranova IP, Nevskaya NA, Teplyakov AV, Wilson K, Strokopytov BV, Arutyunyan G, Khene V (1991) Crystal structure of MnP complex of inorganic pyrophosphatase of yeast at resolution of 2.35 A. Soy Phys Crystallogr 36: 128–132

    CAS  Google Scholar 

  • Cooperman BS (1976) The role of divalent metal ions in phosphoryl and nucleotidyl transfer. In: Sigel H (ed) Metal ions in biological systems, vol 5. Dekker, New York, pp 79–125

    Google Scholar 

  • Cooperman BS (1982) The mechanism of action of yeast inorganic pyrophosphatase. Methods Enzymol 87: 526–548

    Article  PubMed  CAS  Google Scholar 

  • Cooperman BS, Panackal A, Springs B, Hamm DJ (1981) Divalent metal ion, inorganic phosphate, and inorganic phosphate analogue binding to yeast inorganic pyrophosphatase. Biochemistry 20: 6051–6060

    Article  PubMed  CAS  Google Scholar 

  • Cooperman BS, Baykov AA, Lahti R (1992) Evolutionary conservation of the active site of soluble inorganic pyrophosphatase. TIBS 17: 262–266

    PubMed  CAS  Google Scholar 

  • Daley LA, Renosto F, Segel IH (1986) ATP sulfurylase-dependent assays for inorganic pyrophosphate: application to determining the equilibrium constant and reverse direction kinetics of the pyrophosphatase reaction, magnesium binding to orthophosphate, and unknown concentrations of pyrophosphate. Anal Biochem 157: 385–395

    Article  PubMed  CAS  Google Scholar 

  • De Meis L (1984) Pyrophosphate of high and low energy. Contributions of pH, Ca2+,Mg2+ and water to free energy of hydrolysis. J Biol Chem 259: 6090–6097

    PubMed  Google Scholar 

  • Du Jardin P, Rojas-Beltran J, Gebhardt, C, Brasseur R (1995) Molecular cloning and characterization of a soluble inorganic pyrophosphatase in potato. Plant Physiol 109: 853–860

    Article  PubMed  Google Scholar 

  • Fabrichniy IP, Kasho VN, Hyytiä T, Salminen T, Halonen P, Dudarenkov VY, Heikinheimo P, Chernyak VY, Goldman A, Lahti R, Cooperman BS, Baykov AA (1997) Structural and functional consequences of substitutions at the tyrosine 55-lysine 104 hydrogen bond in Escherichia coli inorganic pyrophosphatase. Biochemistry 36: 7746–7753

    Article  PubMed  CAS  Google Scholar 

  • Flodgaard H, Fleron P (1974) Thermodynamic parameters for the hydrolysis of inorganic pyrophosphate at pH 7.4 as a function of [Mg2+], [K+] and ionic strength determined from equilibrium studies of the reaction. J Biol Chem 249: 3465–3474

    PubMed  CAS  Google Scholar 

  • Gomez R, Losada M, Serrano A (1997) Cyanobacterial and algal inorganic pyrophosphatases and the molecular phylogeny of the higher plant enzymes. In: Lahti R (ed) Proc Ist Int Meet on Inorganic pyrophosphatases, University of Turku, Turku, pp 6–9

    Google Scholar 

  • Gonzalez MA, Webb MR, Welsh KM, Cooperman BS (1984) Evidence that catalysis by yeast inorganic pyrophosphatase proceeds by direct phosphoryl transfer to water and not via a phosphoryl enzyme intermediate. Biochemistry 23: 797–801

    Article  PubMed  CAS  Google Scholar 

  • Hackney DD (1980) Theoretical analysis of distribution of [18O]P, species during exchange with water. Application to exchanges catalyzed by yeast inorganic pyrophosphatase. J Biol Chem 255: 5320–5328

    PubMed  CAS  Google Scholar 

  • Harutyunyan EH, Terzyan SS, Voronova AA, Kuranova IP, Smirnova EA, Vainshtein BK, Höhne W, Hansen G (1981) An X-ray study of yeast inorganic pyrophosphatase at 3A resolution. Dokl Akad Nauk SSSR 258: 1481–1485

    Google Scholar 

  • Harutyunyan EH, Kuranova IP, Vainshtein BK, Höhne WE, Lamzin VS, Dauter Z, Teplyakov AV, Wilson KS (1996a) X-ray structure of yeast inorganic pyrophosphatase complexed with manganese and phosphate. Eur J Biochem 239: 220–228

    Article  CAS  Google Scholar 

  • Harutyunyan EH, Oganessyan VY, Oganessyan NN, Terzyan SS, Popov AN, Rubinsky SB, Vain-stein BK, Nazarova TI, Kurilova SA, Vorobjeva NN, Avaeva SM (1996b) The structure of E. colt inorganic pyrophosphatase in its Mn2+ complex at a 2.2 A resolution, Kristallografiya 41: 84–96

    Google Scholar 

  • Harutyunyan EH, Oganessyan VV, Oganessyan NN, Avaeva SM, Nazarova TI, Vorobyeva NN, Kurilova SA, Huber R, Mather T (1997) Crystal structuce of hobo inorganic pyrophosphatase from Escherichia colt at 1.9 A resolution. Mechanism of hydrolysis. Biochemistry 36: 7754–7760

    Article  PubMed  CAS  Google Scholar 

  • Heikinheimo P, Salminen T, Lahti R, Cooperman BS, Goldman A (1995) New crystal forms of Escherichia colt and Saccharomyces cerevisiae soluble inorganic pyrophosphatases. Acta Crystallogr D 51: 399–401

    Article  PubMed  CAS  Google Scholar 

  • Heikinheimo P, Lehtonen J, Baykov AA, Lahti R,Cooperman BS, Goldman A (1996a) The structural basis for pyrophosphatase catalysis. Structure 4: 1491–1508

    Article  CAS  Google Scholar 

  • Heikinheimo P, Pohjanjoki P, Helminen A, Tasanen M, Cooperman BS, Goldman A, Baykov AA, Lahti R (1996b) A site-directed mutagenesis study of Saccharomyces cerevisiae pyrophosphatase. Functional conservatioin of the active site of soluble inorganic pyrophosphatases. Eur J Biochem 239: 138–143

    Article  CAS  Google Scholar 

  • Herschlag D, Jencks WP (1990) Catalysis of the hydrolysis of phosphorylated pyridines by Mg(OH)+: a possible model for enzymatic phosphoryl transfer. Biochemistry 29: 5172–5179

    Article  PubMed  CAS  Google Scholar 

  • Hsu CH, Cooperman BS (1976) Metal ion catalysis of phosphoryl transfer via a ternary complex. The effects of changes in leaving group, metal ion, and attacking nucleophile. J Am Chem Soc 98: 5657

    Article  CAS  Google Scholar 

  • Janson CA, Degani C, Boyer PD (1979) The formation of enzyme-bound and medium pyrophosphate and the molecular basis of the oxygen exchange reaction of yeast inorganic pyrophosphatase. J Biol Chem 254: 3743–3749

    PubMed  CAS  Google Scholar 

  • Jetten MSM, Fluit Ti, Stams AJM, Zehnder AJB (1992) A fluoride-insensitive inorganic pyrophosphatase isolated from Methanothrix soehngenii. Arch Microbiol 157: 284–289

    Article  PubMed  CAS  Google Scholar 

  • Josse J (1966) Constitutive inorganic pyrophosphatase of Escherichia colt. II. Nature and binding of active substrate and the role of magnesium. J Biol Chem 261: 1948–1957

    Google Scholar 

  • Josse J, Wong SCK (1971) Inorganic pyrophosphatase of Escherichia colt. In: Boyer PD (ed) The enzymes, vol 4, 3rd edn. Academic Press, New York, pp 499–527

    Google Scholar 

  • Kay HD (1928) Phosphatases of mammalian tissues. II. Pyrophosphatase. Biochem J. 22: 1446–1448

    PubMed  CAS  Google Scholar 

  • Kankare J, Neal G, Salminen T, Glumoff T, Cooperman BS, Lahti R, Goldman A (1994) The structure of E. colt soluble inorganic pyrophosphatase at 2.7 A resolution. Protein Eng 7: 823–830

    Article  PubMed  CAS  Google Scholar 

  • Kankare J, Salminen T, Lahti R, Cooperman BS, Baykov AA, Goldman A (1996a) Structure of Escherichia colt inorganic pyrophosphatase at 2.2 A resolution. Acta Crystallogr D52: 551–563

    CAS  Google Scholar 

  • Kankare J, Salminen T, Lahti R, Cooperman B, Baykov AA, Goldman A (1996b) Crystallographic identification of metal binding sites in Escherichia colt inorganic pyrophosphatase. Biochemistry 35: 4670–4677

    Article  CAS  Google Scholar 

  • Käpylä J, Hyytiä T, Lahti R, Goldman A, Baykov AA, Cooperman BS (1995) Effect of D97E substitution on the kinetic and thermodynamic properties of Escherichia colt inorganic pyrophosphatase. Biochemistry 34: 792–800

    Article  PubMed  Google Scholar 

  • Knight WB, Fitts SW, Dunanway-Mariano D (1981) Investigation of the catalytic mechanism of yeast inorganic pyrophosphatase. Biochemistry 20: 4079–4086

    Article  PubMed  CAS  Google Scholar 

  • Knight WB, Ting S-J, Chuang S, Dunaway-Mariano D, Haromy T, Sundaralingam M (1983) Yeast inorganic pyrophosphatase substrate recognition. Arch Biochem Biophys 227: 302–309

    Article  PubMed  CAS  Google Scholar 

  • Kolakowski LF, Schloesser MG, Cooperman BS (1988) Cloning, molecular characterization, and chromosome localization of the inorganic pyrophosphatase (PPA) gene from S. cerevisiae. Nucleic Acids Res 22: 10441–10452

    Article  Google Scholar 

  • Kornberg A (1962) On the metabolic significance of phosphorolytic and pyrophosphorolytic reactions. In: Kasha M, Pullman D (eds) Horizons in biochemistry. Academic Press, New York, pp 251–264

    Google Scholar 

  • Kraulis PJ (1991) MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr 24: 946–950

    Article  Google Scholar 

  • Kunitz M, Robbins PW (1961) Inorganic pyrophosphatases. In: Boyer PD, Lardy H, Myrbäck K (eds) The enzymes, vol 5, 2nd edn. Academic Press, New York, pp 169–178

    Google Scholar 

  • Kurilova SA, Bogdanova AV, Nazarova TI, Avaeva SM (1984) Changes in E. colt inorganic pyrophosphatase activity on its interaction with magnesium, zinc, calcium and fluoride ions. Bioorg Khim 10. 1153–1160

    CAS  Google Scholar 

  • Lahti R (1983) Microbial inorganic pyrophosphatases. Microbiol Rev 47: 169–179

    PubMed  CAS  Google Scholar 

  • Lahti R, Pitkäranta T, Valve E, Ilta I, Kukko-Kalske E, Heinonen J (1988) Cloning and character-ization of the gene encoding inorganic pyrophosphatase of Escherichia colt K-12. J Bacteriol 170: 5901–5907

    PubMed  CAS  Google Scholar 

  • Lahti R, Kolakowski LF, Heinonen J, Vihinen M, Pohjanoksa K, Cooperman BS (1990a) Conservation of functional residues between yeast and E. colt inorganic pyrophosphatases. Biochim Biophys Acta 1038: 338–345

    Article  CAS  Google Scholar 

  • Lahti R, Pohjanoksa K, Pitkäranta T, Heikinheimo P, Salminen T, Meyer P, Heinonen J (1990b) A site-directed mutagenesis study on Escherichia colt inorganic pyrophosphatase. Glutamic acid-98 and lysine-104 are important for structural integrity, whereas aspartic acids-97 and -102 are essential for catalytic activity. Biochemistry 29: 5761–5766

    Article  CAS  Google Scholar 

  • Lahti R, Salminen T, Latonen S, Heikinheimo P, Pohjanoksa K, Heinonen J (1991a) Genetic engineering of Escherichia colt inorganic pyrophosphatase. Tyr55 and Tyr141 are important for the structural integrity. Eur J Biochem 198: 293–297

    Article  CAS  Google Scholar 

  • Lundin M, Baltscheffsky H, Ronne H (1991) Yeast PPA2 gene encodes a mitochondrial inorganic pyrophosphatase that is essential for mitochondrial function. J Biol Chem 266: 12168–12172

    PubMed  CAS  Google Scholar 

  • Makhaldiani VV, Smirnova EA, Voronova AA, Kuranova IP, Arutyunyan EG, Vainshtein BK, Höhne W, Binwald B, Hansen G (1978) X-ray diffraction study of inorganic pyrophosphatase from baker’s yeast at a resolution of 6 A. Dokl Akad Nauk SSSR 240: 1478–1481

    CAS  Google Scholar 

  • Maryama S, Maeshima M, Nishimura M, Aoki M, Ichiba T, Sekiguchi J, Hachimori A (1996) Cloning and expression of the inorganic pyrophosphatase gene from thermophilic bacterium PS-3. Biochem Mol Biol Int 40: 679–688

    Google Scholar 

  • Meyer W, Moll R, Kath T, Schäfer G (1995) Purification, cloning and sequencing of Archaebacterial pyrophosphatase from the extreme thermoacidophile Sulfolobus acidocaldarius. Arch Biochem Biophys 319: 149–156

    Article  PubMed  CAS  Google Scholar 

  • Mitchell SJ, Minnick MF (1997) Cloning, functional expression, and complementation analysis of an inorganic pyrophosphatase from Bartonella bacilliformis. Can J Microbiol 43: 734–743

    Article  PubMed  CAS  Google Scholar 

  • Murzin AG (1994) New protein folds. Curr Opin Struct Biol 4: 441–449

    Article  CAS  Google Scholar 

  • Nyrén P, Lundin A (1985) Enzymatic method for continuous monitoring of inorganic pyrophosphate synthesis. Anal Biochem 151: 504–509

    Article  PubMed  Google Scholar 

  • Oganessyan VY, Kurilova SA, Vorobyeva NN, Nazarova TI, Popov AN, Lebedev AA, Avaeva SM, Harutyunyan EH (1994) X-ray crystallographic studies of recombinant inorganic pyrophosphatase from Escherichia colt. FEBS Lett 348: 301–304

    Article  PubMed  CAS  Google Scholar 

  • Plaksina EA, Sergienko OV, Sklyankina VA, Avaeva SM (1981) Preparation of immobilized dimer and monomer of inorganic pyrophosphatase and evidence for catalytic activity of the monomer. Boorg Khim 7: 357–364

    CAS  Google Scholar 

  • Pohjanjoki P, Lahti R, Goldman A, Cooperman S (1998) Evolutionary conservation of enzymatic catalysis: quantitative comparison of the effects of mutation of aligned residues in Saccharomyces cerevisiae and Escherichia coli inorganic pyrophosphatases on enzymatic activity. Biochemistry (in press)

    Google Scholar 

  • Rea PA, Poole RJ (1993) Vacuolar Httranslocating pyrophosphatase. Annu Rev Plant Physiol Plant Mol Biol 44: 157–180

    Article  CAS  Google Scholar 

  • Russell RGG (1976) Metabolism of inorganic pyrophosphate (PP,). Arthritis Reum 19: 465–478

    Article  CAS  Google Scholar 

  • Salminen T, Käpylä J, Heikinheimo P, Goldman A, Heinonen J, Baykov AA, Cooperman BS, Lahti R (1995) Structure and function analysis of Escherichia coli inorganic pyrophosphatase: is a hydroxide ion the key to catalysis? Biochemistry 34: 782–791

    Article  PubMed  CAS  Google Scholar 

  • Salminen T, Teplyakov A, Kankare J, Cooperman BS, Lahti R, Goldman A (1996) An unusual route to thermostability disclosed by the comparison of Thermus thermophilus and Escherichia coli inorganic pyrophosphatases. Protein Sci 5: 1014–1025

    Article  PubMed  CAS  Google Scholar 

  • Samejima T, Takahashi Y, Shinoda H, Satoh T (1997) Protein engineering study on inorganic pyrophosphatases from Bacillus stearothermophilus, Thermus thermophilus and Escherichia coli. In: Lahti R (ed) Proc. Ist Int Meet on Inorganic pyrophosphatases, University of Turku, Turku, pp 24–26

    Google Scholar 

  • Schäfer T, Schäfer G (1997) Pyrophosphatases from Sulfolobus and other Archae. In: Lahti R (ed) Proceedings of the First International Meeting on Inorganic Pyrophosphatases. Universtiy of Turku, Turku, pp 9–12

    Google Scholar 

  • Schlessinger MJ, Coon MJ (1960) Hydrolysis of nucleoside di and triphosphates by crystalline preparations of yeast inorganic pyrophosphatase. Biochim Biophys Acta 41: 30–36

    Article  Google Scholar 

  • Shafranskii YuA, Baykov AA, Andrukovich PF, Avaeva SM (1977) Comparative kinetic studies of the Mg2+-activated hydrolysis of tripolyphosphate and pyrophosphate by inorganic pyrophosphatase. Biokhimiya 42: 1244–1251

    CAS  Google Scholar 

  • Shintani T, Uchiumi T, Yonezawa T, Salminen A, Baykov AA, Lahti R, Hachimori A (1998) Cloning and expression of a unique inorganic pyrophosphatase from Bacillus subtilis. Evidence for a new family of enzyme. FEBS Lett 439: 263–266

    Article  PubMed  CAS  Google Scholar 

  • Sklyankina VA, Avaeva SM (1980) The quaternary structure of Escherichia coli inorganic pyrophosphatase is essential for phosphorylation. Eur J Biochem 191: 195–201

    Article  Google Scholar 

  • Smirnova IN, Baykov AA, Avaeva SM (1986) Studies on inorganic pyrophosphatase using imidodiphosphate as substrate. FEBS Lett 206: 121–124

    Article  PubMed  CAS  Google Scholar 

  • Smirnova IN, Kudryavtseva NA, Komissarenko SV, Tarusova NB, Baykov AA (1988) Diphosponates are potent inhibitors of mammalian inorganic pyrophosphatase. Arch Biochem Biophys 267: 280–284

    Article  PubMed  CAS  Google Scholar 

  • Sonnewald U (1992) Expression of E. coli inorganic pyrophosphatase in transgenic plants alters photoassimilate partitioning. Plant J 2: 571–581

    PubMed  CAS  Google Scholar 

  • Spiro TG (1971) Phosphate transfer and its activation by metal ions: alkaline phosphatase. In: Eichhorn GL (ed) Inorganic biochemistry. Elsevier, Amsterdam, pp 578–581

    Google Scholar 

  • Springs B, Welsh KM, Cooperman BS (1981) Thermodynamics, kinetics and mechanism in yeast inorganic pyrophosphatase catalysis of inorganic pyrophosphate: inorganic phosphate equilibration. Biochemistry 20: 6384–6391

    Article  PubMed  CAS  Google Scholar 

  • Teplyakov A, Obmolova G, Wilson KS, Ishii K, Kaji H, Samejima T, Kuranova I (1994) Crystal structure of inorganic pyrophosphatase from Thermus thermophilus. Protein Sci 3: 1098–1107

    Article  PubMed  CAS  Google Scholar 

  • Terzyan SS, Voronova AA, Smirnova EA, Kuranova IP, Nekrasov YV, Arutyunyan EG, Vainstein BK, Höhne W, Hansen G (1984) Spatial structure of yeast inorganic pyrophosphatase at a resolution of 3 A. Bioorg Khim 10: 1469–1482

    CAS  Google Scholar 

  • Unguryte AL, Smirnova IN, Kasho VN, Baykov AA (1989) Comparison of the catalytic properties of mitochondrial and cytosolic inorganic pyrophosphatases of rat liver. Biol Membr 6: 356–361

    Google Scholar 

  • Veech RL, Cook GA, King MT (1980) Relationship of free cytoplasmic pyrophosphate to liver glucose content and total pyrophosphate to cytoplasmic phosphorylation potential. FEBS Lett 117 Suppl: K65–K72

    Article  PubMed  Google Scholar 

  • Velichko IS, Mikalahti K, Kasho VN, Dudarenkov VY, Hyytiä T, Goldman A, Cooperman BS, Lahti R, Baykov AA (1998) Trimeric inorganic pyrophosphatase of Escherichia coli obtained by directed mutagenesis. Biochemistry 37: 734–740

    Article  PubMed  CAS  Google Scholar 

  • Vihinen M, Lundin M, Baltscheffsky H (1992) Computer modeling of two inorganic pyrophosphatases. Biochem Biophys Res Commun 186: 122–128

    Article  PubMed  CAS  Google Scholar 

  • Volk SE, Baykov AA, Kostenko EB, Avaeva SM (1983) Isolation, subunit structure and localization of inorganic pyrophosphatase of heart and liver mitochondria. Biochim Biophys Acta 744: 127–134

    Article  PubMed  CAS  Google Scholar 

  • Volk SE, Dudarenkov VY, Käpylä J, Kasho VN, Voloshina OA, Salminen T, Goldman A, Lahti R, Baykov AA, Cooperman BS (1996) Effect of E20D substitution in the active site of Escherichia coli inorganic pyrophosphatase on its quaternary structure and catalytic properties. Biochemistry 35: 4662–4669

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Wensel TG (1992a) Inorganic pyrophosphatase from bovine retinal rod outer segments. J Biol Chem 267: 24634–24640

    CAS  Google Scholar 

  • Yang Z, Wensel TG (1992b) Molecular cloning and functional expression of cDNA encoding a mammalian inorganic pyrophosphatase. J Biol Chem 267: 24641–24647

    CAS  Google Scholar 

  • Young TW, Kuhn NJ, Wadeson A, Ward S, Burges D, Cooke GD (1998) Bacillus subtilis ORF yybQ encodes a manganese-dependent inorganic pyrophosphatase with distinctive properties: the first of a new class of soluble pyrophosphatase? Microbiology 144: 2563–2571

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baykov, A.A., Cooperman, B.S., Goldman, A., Lahti, R. (1999). Cytoplasmic Inorganic Pyrophosphatase. In: Schröder, H.C., Müller, W.E.G. (eds) Inorganic Polyphosphates. Progress in Molecular and Subcellular Biology, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58444-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58444-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63597-7

  • Online ISBN: 978-3-642-58444-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics