Skip to main content

Metabolism and Function of Polyphosphates in Bacteria and Yeast

  • Chapter
Inorganic Polyphosphates

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 23))

Abstract

Inorganic polyphosphate (polyPs) found in living organisms more than 100 years ago by Lieberman (1888) are linear polymers containing 2-1000 residues of orthophosphate linked by the energy-rich phosphoanhydride bond. They are widely spread in various microoganisms and are found in small amounts in the cells of animals and plants (Kulaev 1979; Kulaev and Vagabov 1983; Wood and Clark 1988). PolyPs perform varied biological functions. Recent investigations have shown the polyPs belong to biopolymers, the function of which changes when passing from prokaryotic cells to cells of lower and then higher eukaryotes. The comparative characteristics of the functions and metabolic ways of polyPs in different organisms are of interest from the viewpoint of the evolutionary physiology of the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akiyama M, Crooke E, Kornberg A (1992) The polyphosphate kinase gene of Escherichia coli. Isolation and sequence of the ppk gene and membrane location of the protein. J Biol Chem 267: 22556–22561

    PubMed  CAS  Google Scholar 

  • Akiyama M, Crooke E, Kornberg A (1993) An exopolyphosphatase of Escherichia coli. The enzyme and its ppx gene in a polyphosphate operon. J Biol Chem 268: 633–639

    PubMed  CAS  Google Scholar 

  • Andreeva NA, Okorokov LA (1993) Purification and characterization of highly active and stable polyphosphatase from Saccharomyces cerevisiae cell envelope. Yeast 9: 127–139

    Article  PubMed  CAS  Google Scholar 

  • Andreeva NA, Okorokov LA, Kulaev IS (1990) Purification and certain properties of cell envelope polyphosphatase of the yeast Saccharomyces carlsbergansis. Biochemistry (Moscow) 55: 819–826

    Google Scholar 

  • Andreeva NA, Lichko LP, Kulakovskaya TV, Okorokov LA (1993) Characterization of polyphosphatase activity of vacuoles of the yeast Saccharomyces cerevisiae. Biochemistry (Moscow) 58: 737–744

    Google Scholar 

  • Andreeva NA, Kulakovskaya TV, Kulaev IS (1994) Characteristics of the cytosol polyphospha-tase activity of the yeast Saccharomyces cerevisiae. Biochemistry (Moscow) 59: 1411–1417

    Google Scholar 

  • Andreeva NA, Kulakovskaya TV, Kulaev IS (1996) Purification and characterization of polyphosphatase from Saccharomyces cerevisiae cytosol. Biochemistry (Moscow) 61: 1213–1220

    Google Scholar 

  • Baltzinger M, Ebel JP, Remy P (1986) Accumulation of dinucleoside polyphosphates in Saccharomyces cerevisiae under stress conditions. High levels are associated with cell death. Biochimie 68: 1231–1236

    Article  PubMed  CAS  Google Scholar 

  • Beauvoit B, Rigonlet M, Guerin B, Canioni P (1989) Polyphosphates as a source of high energy phosphates in yeast mitochondria: a P-NMR study. FEBS Lett 252: 17–22

    Article  CAS  Google Scholar 

  • Belozersky AN (1958) The formation and function of polyphosphates in the development processes of some lower organisms. In: Communications and Reports of the 4th International Biochemistry Congress, Vienna, p 3

    Google Scholar 

  • Bonting CF, Korstee GJ, Zehnder AJ (1991) Properties of polyphosphate: AMP phosphotransferase of Acinetobacter strain 210A. J Bacteriol 173: 6484–6488

    PubMed  CAS  Google Scholar 

  • Bonting CF, Kortstee GJ, Zehnder JA (1993) Properties of polyphosphatase of Acinetobacter johnsonii 210A. Antonie van Leeuwenhoek 64: 75–81

    Article  PubMed  CAS  Google Scholar 

  • Booth JW, Guidotti G (1995) An alleged yeast polyphosphate kinase is actually diadenosine-5’,5’’’-P1,P4-tetraphosphate a,(3-phosphorylase. J Biol Chem 270: 19377–19382

    Article  PubMed  CAS  Google Scholar 

  • Bourne RM (1991) Net phosphate-transport in phosphate-starved Candida utilis – relationship with pH and K+ Biochim Biophys Acta 1067: 81–88

    Article  PubMed  CAS  Google Scholar 

  • Castuma CE, Huang R, Kornberg A, Reusch RN (1995) Inorganic polyphosphates in the acquisition of competence in Escherichia coli. J. Biol Chem 270: 12980–12983

    Article  PubMed  CAS  Google Scholar 

  • Crooke E, Akiyama M, Rao NN, Kornberg A (1994) Genetically altered levels of inorganic polyphosphate in Escherichia coli. J Biol Chem 269: 6290–6295

    PubMed  CAS  Google Scholar 

  • Deinema MH, Van Loosdrecht M, Scholten A (1985) Some physiological characteristics of Aci- netobacter spp. accumulating large amounts of phosphate. Water Sci Technol 17: 119–125

    CAS  Google Scholar 

  • Dirheimer G, Ebel JP (1965) Charactérisation d’une polyphosphate AMP-phosphotransferase dans Corynebacterium xerosis. R C Acad Sci 260: 3787–3790

    CAS  Google Scholar 

  • Durr M, Urech K, Boller T, Wiemken A, Schwencke J, Nagy M (1979) Sequestration of arginine by polyphosphate in vacuoles of yeast Saccharomyces cerevisiae. Arch Microbiol 121: 169–175

    Article  Google Scholar 

  • Felter S, Stahl AJC (1973) Enzymes du métabolisme des polyphosphates dans la levure. III. Purification et propriétés de la polyphosphate-ADP-phosphotransférase. Biochimie 55: 245–251

    Article  PubMed  CAS  Google Scholar 

  • Hsieh PC, Shenoy BC, Jentoft JE, Philipps NFB (1993) Purification of polyphosphate and ATP glucose phosphotransferase from Mycobacterium tuberculosis H27Ra: evidence that poly(P) and ATP glucokinase activities are catalyzed by the same enzyme. Protein Expr Purif 4: 76–84

    Article  PubMed  CAS  Google Scholar 

  • Huang RP, Reusch RN (1995) Genetic competence in Escherichia coli requires poly-betahydroxbutirate calcium polyphosphate membrane complex and certain divalent cations. J Bacteriol 177: 586–490

    Google Scholar 

  • Huang RP, Reusch RN (1996) Poly (3-hydroxybutirate) is associated with specific proteins in the cytoplasm and membranes of Escherichia coli. J Biol Chem 271: 22196–22202

    Article  PubMed  CAS  Google Scholar 

  • Hunter TA (1987) Thousand and one protein kinases. Cell 50: 823–829

    Article  PubMed  CAS  Google Scholar 

  • Ivanov AJ, Vagabov VM, Fomchenkov VN, Kulaev IS (1996) Study of the influence of polyphosphates of cell envelope on the sensitivity of yeast Saccharomyces carlsbergensis to the cytyl-3methylammonium bromide. Microbiologia (Moscow) 65: 611–616

    Google Scholar 

  • Keasling JD, Bortish LR, Kornberg A (1993) Guanosine pentaphosphate phosphohydrolase of Escherichia coli is a long-chain exopolyphosphatase. Proc Natl Acad Sci USA 90: 7029–7033

    Article  PubMed  CAS  Google Scholar 

  • Kornberg A (1995) Inorganic polyphosphate: toward making a forgotten polymer unforget-table. J Bacteriol 177: 491–496

    PubMed  CAS  Google Scholar 

  • Kornberg A, Kornberg S, Simms E (1956) Methaphosphate synthesis by enzyme from Escherichia coli. Biochim Biophys Acta 20: 215–227

    Article  PubMed  CAS  Google Scholar 

  • Kulaev IS (1979) Biochemistry of inorganic polyphosphates. Wiley, Chichester

    Google Scholar 

  • Kulaev IS (1994) Inorganic polyphosphate function at various stages of cell evolution. J Biol Phys 20: 255–273

    Article  CAS  Google Scholar 

  • Kulaev IS, Vagabov VM (1983) Polyphosphate metabolism in microorganisms. Adv Microbiol Physiol 24: 83–171

    Article  CAS  Google Scholar 

  • Kulaev IS, Vagabov VM, Shabalin YA (1987) New data on biosynthesis of polyphosphates in yeasts. In: Torriani-Gorini A, Rothman FG, Silver S et al. (eds) Phosphate metabolism and cellular regulation in microorganisms. American Society for Microbiology, Washington, DC, pp 233–238

    Google Scholar 

  • Kulakovskaya TV, Andreeva NA, Kulaev IS (1997) Adenosine 5’-tetraphosphate and guanosine5’-tetraphosphate - new substrates of the cytosol exopolyphosphatase of Saccharomyces cerevisiae. Biochemistry (Moscow) 62: 1225–1227

    Google Scholar 

  • Kumble KD, Kornberg A (1996) Endopolyphosphatases for long chain polyphosphate in yeast and mammals. J Biol Chem 271: 27146–27151

    Article  PubMed  CAS  Google Scholar 

  • Kumble KD, Ahn K, Kornberg A (1996) Phosphohistidyl active sites in polyphosphate kinase of Escherichia coli. Proc Natl Acad Sci USA 93: 14391–14395

    Article  PubMed  CAS  Google Scholar 

  • Lichko LP, Okorokov LA, Kulaev IS (1982) Participation of vacuoles in regulation of K+, Mg2+ and orthophosphate ions in cytoplasm of the yeast Saccharomyces carlsbergensis. Arch Microbiol 132: 289–293

    Article  CAS  Google Scholar 

  • Lichko LP, Kulakovskaya TV, Kulaev IS (1994) Effects of platelet-activating factor, sphingosine and heparin on some phosphohydrolase and transport activities of yeast vacuoles. Biochemistry (Moscow) 59: 815–821

    Google Scholar 

  • Lichko LP, Kulakovskaya TV, Dmitriev VV, Kulaev IS (1995) Saccharomyces cerevisiae nuclei possess polyphosphatase activity. Biochemistry (Moscow) 60: 1465–1468

    Google Scholar 

  • Lichko LP, Kulakovskaya TV, Kulaev IS (1996a) Characterization of the nuclear polyphosphatase activity in Saccharomyces cerevisiae. Bichemistry (Moscow) 61: 361–366

    Google Scholar 

  • Lichko LP, Kulakovskaya TV, Kulaev IS (1996b) Characterization of the polyphosphatase activity in isolated Saccharomyces cerevisiae mitochondria. Biochemistry (Moscow) 61: 1664–1671

    CAS  Google Scholar 

  • Lichko LP, Kulakovskaya TV, Kulaev IS (1997) Detection and some properties of membrane-bound and soluble polyphosphatases in mitochondria of yeast Saccharomyces cerevisiae. Bio-chemistry (Moscow) 62: 1139–1145

    Google Scholar 

  • Lieberman L (1888) Ãœber das Nuclein der Hefe und künstliche Darstellung eines Nucleus-Eiweiss und Metaphosphatsäure. Ber Chem Ges 21: 598–607

    Article  Google Scholar 

  • Lorenz B, Muller WEG, Kulaev IS, Schroder HCJ (1994) Purification and characterization of an exopolyphosphatase from Saccharomyces cerevisiae. J Biol Chem 269: 22198–22204

    PubMed  CAS  Google Scholar 

  • Margulis L (1993) Symbiosis in cell evolution. Freeman, San Francisco

    Google Scholar 

  • Nakamura K, Hiraishi A, Yoshimi Y, Kawaharasaki M, Masuda K, Kamagata Y (1995) Microlunatus phosphorovorus gen.nov sp.nov., a new gram-positive polyphosphate-accumulation bacterium isolated from activated sludge. Int J Syst Bacteriol 45: 17–22

    Article  PubMed  CAS  Google Scholar 

  • Nelson N (1989) Structure, molecular genetics and evolution of vacuolar H+-ATPases. J Bioenerg Biomembr 21: 553–571

    Article  PubMed  CAS  Google Scholar 

  • Nelson N (1992) Evolution of organellar proton-ATPases. Biochim Biophys Acta 1100: 109–124

    Article  PubMed  CAS  Google Scholar 

  • Offenbacher S, Kline H (1984) Evidence for polyphosphate in phosphorylated non-histone nuclear proteins. Arch Biochem Biophys 231: 114–123

    Article  PubMed  CAS  Google Scholar 

  • Okorokov LA (1994) Several compartments of Saccharomyces cerevisiae are equipped with Ca2+-ATPase(s). FEMS Microbiol Lett 117: 311–318

    Article  PubMed  CAS  Google Scholar 

  • Okorokov LA, Lichko LP, Kulaev IS (1980) Vacuoles: the main compartment of potassium, mag-nesium and phosphate ions in Saccharomyces carisbergensis cells. J Bacteriol 144: 661–665

    PubMed  CAS  Google Scholar 

  • Okorokov LA, Lichko LP, Andreeva NA (1983) Changes of ATP, polyphosphate and K+ contents in Saccharomyces carisbergensis during uptake of Mn2+ and glucose. Biochem Int 6: 481–488

    PubMed  CAS  Google Scholar 

  • Phillips NF, Horn PJ, Wood HG (1993) The polyphosphate and ATP dependent glucokinase from Propionibacterium shermanii : both activities are catalyzed by the same protein. Arch Biochem Biophys 300: 309–319

    Article  PubMed  CAS  Google Scholar 

  • Piletus U, Meyer A, Hildebrandt A (1989) Nuclear polyphosphate as a possible source of energy during the sporulation of Physarum polycephalum. Arch Biochem Biophys 275: 215–223

    Article  Google Scholar 

  • Pisoni RL, Lindley ER (1992) Incorporation of [32-P] orthophosphate into long chain of inor-ganic polyphosphate within lysosomes of human fibroblasts. J Biol Chem 267: 3626–3631

    PubMed  CAS  Google Scholar 

  • Popova TN (1993) Isocitratedehydrogenases: forms, localization, properties, and regulation. Biochemistry (Moscow) 58: 1861–1879

    CAS  Google Scholar 

  • Rao NN, Kornberg A (1996) Inorganic polyphosphate support resistance and survival of stationary-phase Escherichia coli. J Bacteriol 178: 1394–1400

    PubMed  CAS  Google Scholar 

  • Rea PA, Poole RJ (1993) Vacuolar Httranslocating pyrophosphatase. Annu Rev Plant Physiol Plant Mol Biol 44: 157–180

    Article  CAS  Google Scholar 

  • Reusch RN (1989) Poly-beta-hydroxybutirate/calcium polyphosphate complexes in eukaryotic membranes. R Soc Exp Biol Med 191: 377–381

    CAS  Google Scholar 

  • Reusch RN, Sadoff HL (1988) Putative structure and functions of poly-beta-hydroxybutirate/ calcium polyphosphate channel in bacterial plasma membranes. Proc Natl Acad Sci USA 85: 4176–4180

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez RJ (1993) Polyphosphate present in DNA preparation from filamentous fungal species of Colleotrichum inhibits restriction endonucleases and other enzymes. Anal Biochem 209: 291–297

    Article  PubMed  CAS  Google Scholar 

  • Schroder HC, Oliveira M, Tully G, Leitao JM, Muller WEG (1996) Inorganic polyphosphate-age-related synthesis of a forgotten macromolecule. Z Gerontol Geriatr 29: 85

    Google Scholar 

  • Shabalin YA, Vagabov VM, Tsiomenko AB, Zemlianuhina OA, Kulaev IS (1977) Study of poly-phosphate kinase activity in the yeast vacuoles. Biokhimiya 42: 1642–1648

    CAS  Google Scholar 

  • Skorko K (1989) Polyphosphate as a source of phosphoryl group in protein modification in archaebacterium Sulfolobus acidocaldarius. Biochimie 71: 9–10

    Article  Google Scholar 

  • Szymona M (1957) Utilization of inorganic polyphosphates for phosphorilation of glucose in Micobacterium phlei. Bull Acad Pol Sci Ser Sci Biol 5: 379–382

    CAS  Google Scholar 

  • Szymona M, Ostrowsky W (1964) Inorganic polyphosphate glucokinase of Micobacterium phlei. Biochim Biophys Acta 85: 283–295

    PubMed  CAS  Google Scholar 

  • Tepel M, Bachmann J, Schluter H, Zidek W (1996) Diadenosine polyphosphates, increase cytosolic calcium and attenuate angiotensin-Il-induced changes of calcium in vascular smooth-muscle cells. J Vasc Res 33: 132–138

    Article  PubMed  CAS  Google Scholar 

  • Tinsley CR, Gotschlich EC (1995) Cloning and characterization of the meningococcal polyphosphate kinase gene: production of polyphosphate synthesis mutant. Infect Immun 63: 1624–1630

    PubMed  CAS  Google Scholar 

  • Tinsley CR, Manjula BN, Gotschlich EC (1993) Purification and characterization of polyphosphate kinase from Neisseria meningitis. Infect Immun 61: 3703–1710

    PubMed  CAS  Google Scholar 

  • Urech K, Durr M, Boller T, Wiemken A (1978) Localization of polyphosphate in vacuoles of Saccharomyces cerevisiae. Arch Microbiol 116: 274–278

    Article  Google Scholar 

  • Vagabov VM, Chemodanova OV, Kulaev IS (1990) Effect of inorganic polyphosphates on negative charge of yeast cell wall. Dokl Akad Nauk SSSR 313: 989–992

    CAS  Google Scholar 

  • Van Alebeek GJWM, Keitjens JT, Van der Drift C (1994) Tripolyphosphatase from Methanobac-terium thermoautotrophicum (strain DH). FEMS Microbiol Lett 117: 263–268

    Article  Google Scholar 

  • Van Groenestijn JW, Bentvelzen MMA, Deinema MH, Zehnder AJB (1989) Polyphosphate degrading enzymes in Acinetobacter spp. and activated sludge. Appl Environ Microbiol 55: 219–223

    PubMed  Google Scholar 

  • Wiemken A, Durr M (1974) Characterization of amino acid pools in the vacuolar compartment of Saccharomyces cerevisiae. Arch Microbiol 101: 45–57

    Article  PubMed  CAS  Google Scholar 

  • Wiemken A, Schellenberg M, Urech K (1979) Vacuoles: the sole compartments of digestive enzymes in yeast (Saccharomyces cerevisiae). Arch Microbiol 123: 23–35

    Article  CAS  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms. Proposal for the domenus Archaea bacteria, Eucaria. Proc Natl Acad Sci USA 87: 4576–4579

    Article  PubMed  CAS  Google Scholar 

  • Wood HG, Clark JE (1988) Biological aspects of inorganic polyphosphates. Annu Rev Biochem 57: 235–260

    Article  PubMed  CAS  Google Scholar 

  • Wurst H, Kornberg A (1994) A soluble exopolyphosphatase of Saccharomyces cerevisiae. J Biol Chem 269: 10966–11001

    Google Scholar 

  • Wurst H, Shiba T, Kornberg A (1995) The gene for a major exopolyphosphatase of Saccharomyces cerevisiae. J Bacteriol 177: 898–906

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kulaev, I.S., Kulakovskaya, T.V., Andreeva, N.A., Lichko, L.P. (1999). Metabolism and Function of Polyphosphates in Bacteria and Yeast. In: Schröder, H.C., Müller, W.E.G. (eds) Inorganic Polyphosphates. Progress in Molecular and Subcellular Biology, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58444-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58444-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63597-7

  • Online ISBN: 978-3-642-58444-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics