Skip to main content

Genetic Improvement of Bacteria for Enhanced Biological Removal of Phosphate from Wastewater

  • Chapter
Inorganic Polyphosphates

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 23))

Abstract

Phosphorus (P) is an essential constituent in all types of living organisms. It is present in nucleic acids, phospholipids and various cytoplasmic solutes. Microorganisms use inorganic phosphate (Pi) as the preferred P source (Wanner 1996). Pi removal from wastewaters has received considerable attention, since P, is believed to be responsible for nuisance growth of algae in lakes and waterways (Codd and Bell 1985). Algal blooms degrade water quality by producing an offensive odor and taste. The nuisance growth of algae renders boating and fishing difficult and discourages swimming. Excessive growth of algae consumes dissolved oxygen, when the algae are decomposed by aerobic bacteria, causing mass mortality of fish and other aquatic organisms. Algal toxin production is also a serious problem in drinking water supplies (Wicks and Thiel 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akiyama M, Crooke E, Kornberg A (1992) The polyphosphate kinase gene of Escherichia coli. J Biol Chem 267: 22556–22561

    PubMed  CAS  Google Scholar 

  • Akiyama M, Crooke E, Kornberg A (1993) An exopolyphosphatase of Escherichia coli : the enzyme and its ppx gene in a polyphosphate operon. J Biol Chem 268: 633–639

    PubMed  CAS  Google Scholar 

  • Amemura M, Shinagawa H, Makino K, Otsuji N, Nakata A (1985) Cloning of and complementation tests with alkaline phosphatase regulatory genes (phoS and phoT) of Escherichia coli. J Bacteriol 152: 692–701

    Google Scholar 

  • Bayer ME (1968) Areas of adhesion between wall and membrane of Escherichia colt. J Gen Microbiol 53: 395–404

    Article  PubMed  CAS  Google Scholar 

  • Carberry JB, Tenney MW (1973) Luxury uptake of phosphate by activated sludge. J Water Pollut Control Fed 45: 2444–2462

    PubMed  CAS  Google Scholar 

  • Codd GA, Bell SG (1985) Eutrophication in freshwaters. J Water Pollut Control Fed 84: 225–232

    Google Scholar 

  • Crooke E, Akiyama M, Rao NN, Kornberg A (1994) Genetically altered levels of inorganic polyphosphate in Escherichia colt. J Biol Chem 269: 6290–6295

    PubMed  CAS  Google Scholar 

  • Fuhs GW, Chen M (1975) Microbiological basis of phosphorus removal in the activated sludge process for the treatment of wastewater. Microb Ecol 2: 119–138

    Article  CAS  Google Scholar 

  • Geissdorfer W, Frosch SC, Haspel G, Ehrt S, Hillen W (1995) Two genes encoding proteins with similarities to rubredoxin and rubredoxin reductase are required for conversion of dodecane to lauric acid in Acinetobacter calcoaceticus. Microbiology 141: 1425–1432

    Article  PubMed  CAS  Google Scholar 

  • Gough JA, Murray NE (1983) Sequence diversity among related genes for recognition of specific targets in DNA molecules. J Mol Biol 166: 1–19

    Article  PubMed  CAS  Google Scholar 

  • Griffin JB, Davidian NM, Penniall R (1965) Studies of phosphorus metabolism by isolated nuclei. VII. Identification of polyphosphate as a product. J Biol Chem 240: 4427–4434

    PubMed  CAS  Google Scholar 

  • Haeusler PA, Dieter L, Rittle KJ, Shepler LS, Paszkowski AL, Moe OA (1992) Catalytic properties of Escherichia colt polyphosphate kinase: an enzyme for ATP regeneration. Biotechnol Appl Biochem 15: 125–133

    PubMed  CAS  Google Scholar 

  • Halvorson HO, Suresh N, Roberts MF, Coccia M, Chikarmane HM (1987) Metabolically active surface polyphosphate pool in Acinetobacter Iwoffi. In: Torriani-Gorini A, Rothman FG, Silver S, Wright A, Yagil E (eds) Phosphate metabolism and cellular regulation in microorganisms. American Society for Microbiology, Washington, DC, pp 220–223

    Google Scholar 

  • Hardoyo, Yamada K, Shinjo H, Kato J, Ohtake H (1994) Production and release of polyphosphate by a genetically engineered strain of Escherichia colt. Appl Environ Microbiol 60: 3485–3490

    PubMed  CAS  Google Scholar 

  • Harold FM (1963) Accumulation of inorganic polyphosphate in Aerobacter aerogenes. I. Relationship to growth and nucleic acid synthesis. J Bacteriol 86: 216–221

    PubMed  CAS  Google Scholar 

  • Harold FM (1966) Inorganic polyphosphates in biology: structure, metabolism, and function. Bacteriol Rev 30: 772–794

    PubMed  CAS  Google Scholar 

  • Harold FM, Harold RL (1965) Degradation of inorganic polyphosphate in mutants of Aerobacter aerogenes. J Bacteriol 89: 1262–1270

    PubMed  CAS  Google Scholar 

  • Higgins CF (1992) ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8: 67–113

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M, Tabata S (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions (supplement). DNA Res 30: 185–209

    Article  Google Scholar 

  • Kato J, Yamada K, Muramatsu A, Hardoyo, Ohtake H (1993a) Genetic improvement of Escherichia colt for the enhanced biological removal of phosphate. Appl Environ Microbiol 59: 3744–3749

    CAS  Google Scholar 

  • Kato J, Yamamoto T, Yamada K, Ohtake H (1993b) Cloning, sequence and characterization of the polyphosphate kinase-encoding gene (ppk) of Klebsiella aerogenes. Gene 137: 237–242

    Article  CAS  Google Scholar 

  • Kulaev IS (1975) Biochemistry of inorganic polyphosphates. Rev Physiol Biochem Pharmacol 73: 131–158

    Article  PubMed  CAS  Google Scholar 

  • Lee T-Y, Makino K, Shinagawa H, Nakata A (1990) Overproduction of acetate kinase activates phosphate regulon in the absence of the phoR and phoM functions in Escherichia colt. J Bacteriol 172: 2245–2249

    PubMed  CAS  Google Scholar 

  • Makino K, Shinagawa H, Amemura M, Nakata A (1986) Nucleotide sequence of the phoB gene, the positive regulatory gene for the phosphate regulon of Escherichia colt K12. J Mol Biol 190: 37–44

    Article  PubMed  CAS  Google Scholar 

  • Neidhardt FC, Bloch PL, Smith DF (1974) Culture medium for Enterobacteria. J Bacteriol 119: 736–747

    PubMed  CAS  Google Scholar 

  • Ohtake H, Takahashi K, Tsuzuki Y, Toda K (1985) Uptake and release of phosphate by a pure culture of Acinetobacter calcoaceticus. Water Res 19: 1587–1594

    Article  CAS  Google Scholar 

  • Rao NN, Roberts MF, Torriani A (1985) Amount and chain length of polyphosphates in Escherichia coli dependent on cell growth conditions. J Bacteriol 162: 205–211

    Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41: 100–180

    PubMed  CAS  Google Scholar 

  • Tinsley CR, Gotschlich EC (1995) Cloning and characterization of the meingococcal polyphosphate kinase gene: production of polyphosphate synthesis mutants. Infect Immun 63: 1624–1630

    PubMed  CAS  Google Scholar 

  • Vieira J, Messing J (1987) Production of single-stranded plasmid DNA. Methods Enzymol 153: 3–11

    Article  PubMed  CAS  Google Scholar 

  • Wanner BL (1996) Phosphorus assimilation and control of the phosphate regulon. In: Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella typhimurium : cellular and molecular biology, 2nd edn. American Society for Microbiology, Washington, DC, pp 1357–1381

    Google Scholar 

  • Wicks JR, Thiel PG (1990) Environmental factors affecting the production of peptide toxins in floating scums of the cyanobacterium Microcystis aeruginosa in a hypertrophic African reservoir. Environ Sci Technol 24: 1413–1418

    Article  CAS  Google Scholar 

  • Wood HG, Clark JE (1988) Biological aspects of inorganic polyphosphates. Annu Rev Biochem 57: 235–260

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ohtake, H., Kuroda, A., Kato, J., Ikeda, T. (1999). Genetic Improvement of Bacteria for Enhanced Biological Removal of Phosphate from Wastewater. In: Schröder, H.C., Müller, W.E.G. (eds) Inorganic Polyphosphates. Progress in Molecular and Subcellular Biology, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58444-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58444-2_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63597-7

  • Online ISBN: 978-3-642-58444-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics