Skip to main content

Study of Polyphosphate Metabolism in Intact Cells by 31-P Nuclear Magnetic Resonance Spectroscopy

  • Chapter
Inorganic Polyphosphates

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 23))

Abstract

Inorganic polyphosphates (polyP) are naturally occurring linear polymers of orthophosphate that are found in microorganisms, lower eukaryotes such as yeast, and animals (Harold 1966, Kulaev and Vagabov 1983; Wood and Clark 1988). In certain cases, polyP can accumulate to more than 10% of total dry mass. The ubiquitous presence of polyP suggests that they may have important physiological functions. For example, polyP has been proposed to function as a high-energy reserve or a phosphate reserve and may play an important role in regulating the levels of ATP (Harold 1966). Due to their polyanionic nature, polyP can also serve as counter ions for cationic species such as Mg’, Mn’, basic amino acids, and polyamines. In this regard, they may function in counteracting the osmotic pressure exerted by basic amino acids and various cations accumulated in fungal vacuoles. In addition, the presence of polyP in nuclei and membrane in certain organisms would suggest that polyP may have other unknown functions. It has been difficult to study the metabolism, regulation, and function of polyP for the following reasons: (1) polyP does not possess chromophores in its chemical structures; (2) polyP cannot easily be derivatized with specific chromophore or fluorescent probe; and (3) polyP may exist as a mixture of polymers with varying chain length, ranging from 3 to 1000 residues. Several analytical methods have been developed to study polyP, including enzymatic assay, HPLC and electrophoresis (reviewed by Wood and Clark 1988). Among them, in vivo phosphorus-31 nuclear magnetic resonance (31PNMR) remains, arguably, the unique one, being the least disruptive and quantitative (Roberts 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akiyama M, Crooke E, Kornberg A (1992) The polyphosphate kinase gene of Escherichia coli : isolation and sequence of the ppk gene and membrane location of the protein. J Biol Chem 267: 22556–22561

    PubMed  CAS  Google Scholar 

  • Akiyama M, Crooke E, Kornberg A (1993) An exopolyphosphatase of Escherichia coli : the enzyme and its ppx gene in a polyphosphate operon. J Biol Chem 268: 633–639

    PubMed  CAS  Google Scholar 

  • Beauvoit B, Rigoulet M, Raffard G, Canioni P, Guerin B (1991) Differential sensitivity of the cel-lular compartments of Saccharomyces cerevisiae to protonophoric uncoupler under fermenta-tive and respiratory energy supply. Biochemistry 30: 11212–11220

    Article  PubMed  CAS  Google Scholar 

  • Bental M, Pick U, Avron M, Degani H (1990) Metabolic studies with NMR spectroscopy of the alga Dunaliella salina trapped within agarose beads. Eur J Biochem 188: 111–116

    Article  PubMed  CAS  Google Scholar 

  • Bental M, Pick U, Avron M, Degani H (1991) Polyphosphate metabolism in the alga Dunaliella salina studied by 31P-NMR. Biochim Biophys Acta 1092: 21–28

    Article  PubMed  CAS  Google Scholar 

  • Bonting CF, Kortstee GJ, Zehnder AJ (1991) Properties of polyphosphate: AMP phosphotransferase of Acinetobacter strain 210A. J Bacteriol 173: 6484–6488

    PubMed  CAS  Google Scholar 

  • Bourne RM (1990) A 31P-NMR study of phosphate transport and compartmentation in Candida utilis. Biochim Biophys Acta 1055: 1–9

    Article  PubMed  CAS  Google Scholar 

  • Cassone A, Carpinelli G, Angiolella L, Maddaluno G, Podo F (1983) 31P nuclear magnetic resonance study of growth and dimorphic transition in Candida albicans. J Gen Microbiol 129: 1569–1575

    PubMed  CAS  Google Scholar 

  • Castro CD, Meehan AJ, Koretsky AP, Domach MM (1995) In situ 31P nuclear magnetic resonance for observation of polyphosphate and catabolite responses of chemostat-cultivated Saccharomyces cerevisiae after alkalinization. Appl Environ Microbiol 61: 4448–4453

    PubMed  CAS  Google Scholar 

  • Cowling RT, Birnboim HM (1994) Incorporation of [32P]orthophosphate into inorganic polyphosphates by human granulocytes and other human cell types. J Biol Chem 269: 9480–9485

    PubMed  CAS  Google Scholar 

  • Cramer CL, Davis RH (1984) Polyphosphate-cation interaction in the amino acid-containing vacuole of Neurospora crassa. J Biol Chem 259: 5152–5157

    PubMed  CAS  Google Scholar 

  • Gillies RJ, Ugurbil K, den Hollander JA, Shulman RG (1981) 31P-NMR studies of intracellular pH and phosphate metabolism during cell division cycle of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 78: 2125–2129

    Article  PubMed  CAS  Google Scholar 

  • Greenfield NJ, Hussain M, Lenard J (1987) Effects of growth state and amines on cytoplasmic and vacuolar pH, phosphate and polyphosphate levels in Saccharomyces cerevisiae : a 31P-nuclear magnetic resonance study. Biochim Biophys Acta 926: 205–214

    Article  PubMed  CAS  Google Scholar 

  • Greenfield NJ, McKenzie MA, Adebodun F, Jordan F, Lenard J (1988) Metabolism of D-glucose in a wall-less mutant of Neurospora crassa examined by 13C and 31P nuclear magnetic resonances: effects of insulin. Biochemistry 27: 8526–8533

    Article  PubMed  CAS  Google Scholar 

  • Grimmecke HD, Meyer H, Scheller D, Reuter G (1981) Structure of the cell wall polysaccharide in the food protein yeast Candida spec H. III. Characterization of different phosphate bonds in the mannan-protein-phosphate complex. Z Allg Mikrobiol 21: 201–210

    Article  PubMed  CAS  Google Scholar 

  • Harold FM (1966) Inorganic polyphosphates in biology: structure, metabolism, and function. Bacteriol Rev 30: 772–794

    PubMed  CAS  Google Scholar 

  • Holahan PK, Knizner SA, Gabriel CM, Swenberg CE (1988) Alterations in phosphate metabo-lism during cellular recovery of radiation damage in yeast. Int J Radiat Biol 54: 545–562

    Article  PubMed  CAS  Google Scholar 

  • Huang R, Reusch RN (1996) Poly(3-hydroxybutyrate) is associated with specific proteins in the cytoplasm and membranes of Escherichia coli. J Biol Chem 271: 22196–22202

    Article  PubMed  CAS  Google Scholar 

  • Kjieldstad B, Johnsson A (1987) A 31P-NMR study of Propionibacterium acnes, including effects caused by near-ultraviolet irradiation. Biochim Biophys Acta 927: 184–189

    Article  Google Scholar 

  • Kjieldstad B, Johnsson A, Furuheim KM, Bergan AS, Krane JZ (1989) Hyperthermia induced polyphosphate changes in Propionibacterium acnes as studied by 31P-NMR. Naturforschung C44: 45–48

    Google Scholar 

  • Kugel H, Mayer A, Kirst GO, Leibfritz (1987) In vivo P-31 NMR measurements of phosphate metabolism in Platymonas subcordiformis as related to external pH. Eur Biophys J 14: 461–470

    Article  CAS  Google Scholar 

  • Kulaev IS (1979) The biochemistry of inorganic polyphosphates. Wiley, New York

    Google Scholar 

  • Kulaev IS, Vagabov VM (1983) Polyphosphate metabolism in micro-organisms. Adv Microb Physiol 24: 83–171

    Article  PubMed  CAS  Google Scholar 

  • Kumble KD, Kornberg A (1995) Inorganic polyphosphate in mammalian cells and tissues. J Biol Chem 270: 5818–5822

    Article  PubMed  CAS  Google Scholar 

  • Lee PC, Bochner BR, Ames BN (1983) AppppA, heat shock stress, and cell oxidation. J Biol Chem 258: 6827–6834

    PubMed  CAS  Google Scholar 

  • Lorenz B, Munkner J, Oliveira MP, Kuusksalu A, Leitao JM, Muller WE, Schroder HC (1997) Changes in metabolism of inorganic polyphosphate in rat tissues and human cells during development and apoptosis. Biochim Biophys Acta 1335: 51–60

    Article  PubMed  CAS  Google Scholar 

  • Loureiro-Dias MC, Santos H (1989) Effects of 2-deoxyglucose on Saccharomyces cerevisiae as observed by in vivo 31P-NMR. FEMS Microbiol Lett 48: 25–28

    Article  PubMed  CAS  Google Scholar 

  • Lyngstad M, Grasdalen H (1993) A new NMR airlift bioreactor used in 31P-NMR studies of itaconic acid producing Aspergillus terreus. J Biochem Biophys Methods 27: 105–116

    Article  PubMed  CAS  Google Scholar 

  • Magness JE, McFarland EW (1997) A radiobiological probe for simultaneous NMR spectroscopy and 192ír gamma irradiation of Saccharomyces cerevisiae. Biochem Biophys Res Commun 233: 238–243

    Article  PubMed  CAS  Google Scholar 

  • Mannazzu I, Guerra E, Strabbioli R, Masia A, Maestrale GB, Zoroddu MA, Fatichenti F (1997) Vanadium affects vacuolation and phosphate metabolism in Hansenula polymorpha. FEMS Microbiol Lett 147: 23–28

    Article  PubMed  CAS  Google Scholar 

  • Meehan AJ, Eskey CJ, Koretsky AP, Domach MM (1992) Cultivator for NMR studies of suspended cell cultures. Biotechnol Bioeng 40: 1359–1366

    Article  PubMed  CAS  Google Scholar 

  • Phillips NF, Horn PJ, Wood HG (1993) The polyphosphate-and ATP-dependent glucokinase from Propionibacterium shermanii : both activities are catalyzed by the same protein. Arch Biochem Biophys 300: 309–319

    Article  PubMed  CAS  Google Scholar 

  • Pilatus U, Mayer A, Hildebrandt A (1989) Nuclear polyphosphate as a possible source of energy during the sporulation of Physarum polycephalum. Arch Biochem Biophys 275: 215–223

    Article  PubMed  CAS  Google Scholar 

  • Pick U, Bental M, Chitlaru E, Weiss M (1990) Polyphosphate-hydrolysis - a protective mechanism against alkaline stress? FEBS Lett 274: 15–18

    Article  PubMed  CAS  Google Scholar 

  • Rao NN, Torriani A (1988) Utilization by Escherichia coli of a high-molecular-weight, linear polyphosphate: roles of phosphatases and pore proteins. J Bacteriol 170: 5216–5223

    PubMed  CAS  Google Scholar 

  • Reidl HH, Grover TA, Takemoto JY (1989) 31P-NMR evidence for cytoplasmic acidification and phosphate extrusion in syringomycin-treated cells of Rhodotorula pilimanae. Biochim Biophys Acta 1010: 325–329

    Article  PubMed  CAS  Google Scholar 

  • Reusch RN, Sadoff HL (1988) Putative structure and functions of a poly-beta-hydroxybutyrate/ calcium polyphosphate channel in bacterial plasma membranes. Proc Natl Acad Sci USA 85: 4176–4180

    Article  PubMed  CAS  Google Scholar 

  • Roberts MF (1987) Polyphosphates. In: Bert CT (ed) Phosphorus NMR in biology. CRC Press, Boca Raton, FL, pp 85–94

    Google Scholar 

  • Salhany JM, Yamane T, Shulman RG, Ogawa S (1975) High resolution 31P nuclear magnetic resonance studies of intact yeast cells. Proc Natl Acad Sci USA 72: 4966–4970

    Article  PubMed  CAS  Google Scholar 

  • Sharfstein ST, Keasling JD (1994) Polyphosphate metabolism in Escherichia coll. Ann N Y Acad Sci 745: 77–91

    Article  PubMed  CAS  Google Scholar 

  • Shirahama K, Yazaki Y, Sakano K, Wada Y, Ohsumi Y (1996) Vacuolar function in the phosphate homeostasis of the yeast Saccharomyces cerevisiae. Plant Cell Physiol 37: 1090–1093

    Article  PubMed  CAS  Google Scholar 

  • Sianoudis J, Kusel AC, Mayer A, Grimme LH, Leibfritz D (1986) Distribution of polyphosphate in cell compartments of Chlorella fusca by 31-P-NMR spectroscopy. Arch Microbiol 144: 48–54

    Article  CAS  Google Scholar 

  • Tijssen JP, Van Steveninck J (1984) Detection of a yeast polyphosphate fraction localized outside the plasma membrane by the method of phosphorus-31 nuclear magnetic resonance. Biochem Biophys Res Commun 119: 447–451

    Article  PubMed  CAS  Google Scholar 

  • Van Dien SJ, Keyhani S, Yang C, Keasling JD (1997) Manipulation of independent synthesis and degradation of polyphosphate in Escherichia coli for investigation of phosphate secretion from the cell. Appl Environ Microbiol 63: 1689–1695

    PubMed  Google Scholar 

  • Van Veen HW, Abee T, Kortstee GJ, Pereira H, Konings WN, Zehnder AJ (1994) Generation of a proton motive force by the excretion of metal-phosphate in the polyphosphate-accumulating Acinetobacter johnsonii strain 210A. J Biol Chem 269: 29509–29514

    PubMed  Google Scholar 

  • Van Wazer JR, Ditchfield R (1987) Phosphorus compounds and their 31P chemical shifts. In: Bert CT (ed) Phosphorus NMR in biology. CRC Press, Boca Raton, pp 1–24

    Google Scholar 

  • Wood HG, Clark JE (1988) Biological aspects of inorganic polyphosphates. Annu Rev Biochem 57: 235–260

    Article  PubMed  CAS  Google Scholar 

  • Wurst H, Shiba T, Kornberg A (1995) The gene for a major exopolyphosphatase of Saccharomyces cerevisiae. J Bacteriol 177: 898–906

    PubMed  CAS  Google Scholar 

  • Yang YC, Bastos M, Chen KY (1993) Effects of osmotic stress and growth stage on cellular pH and polyphosphate metabolism in Neurospora crassa as studied by 31P nuclear magnetic resonance spectroscopy. Biochim Biophys Acta 1179: 141–147

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, K.Y. (1999). Study of Polyphosphate Metabolism in Intact Cells by 31-P Nuclear Magnetic Resonance Spectroscopy. In: Schröder, H.C., Müller, W.E.G. (eds) Inorganic Polyphosphates. Progress in Molecular and Subcellular Biology, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58444-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58444-2_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63597-7

  • Online ISBN: 978-3-642-58444-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics