Skip to main content

From Polyphosphates to Bisphosphonates and Their Role in Bone and Calcium Metabolism

  • Chapter
Inorganic Polyphosphates

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 23))

Abstract

This review will first describe the results obtained for the most part about 30-40 years ago on the effects and the possible role of pyrophosphate in bone and calcium metabolism. In a second part we shall describe how these results led to the development of a new class of compounds which are analogues of pyrophosphate, the bisphosphonates. The latter are today the main therapeutic drugs in the treatment of bone diseases characterized by increased osteolysis, such as Paget’s disease, tumor bone disease, and osteoporosis. Lastly, the possibility of using and extrapolating the intracellular effects of these compounds on the possible action of pyrophosphate and polyphosphates in the cell will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adami S, Bhalla AK, Dorizzi R, Montesanti F, Rosini S, Salvagno G, Lo Cascio V (1987) The acute-phase response after bisphosphonate administration. Calcif Tissue Int 41: 326–331

    Article  PubMed  CAS  Google Scholar 

  • Anderson HC, Reynolds JJ (1973) Pyrophosphate stimulation of calcium uptake into cultured embryonic bones. Fine structure of matrix vesicles and their role in calcification. Dev Bio134: 211–227

    Article  Google Scholar 

  • Balena R, Toolan BC, Shea M, Markatos A, Myers ER, Lee SC, Opas EE, Seedor JG, Klein H., Frankenfield D, Quartuccio H, Fioravanti C, Clair J, Brown E, Hayes WC, Rodan GA (1993) The effects of 2-year treatment with the aminobisphosphonate alendronate on bone metabolism, bone histomorphometry, and bone strength in ovariectomized nonhuman primates. J Clin Invest 92: 2577–2586

    Article  PubMed  CAS  Google Scholar 

  • Bisaz S, Russell RGG, Fleisch H (1968) Isolation of inorganic pyrophosphate from bovine and human teeth. Arch Oral Biol 13: 683–696

    Article  PubMed  CAS  Google Scholar 

  • Bisaz S, Jung A, Fleisch H (1978) Uptake by bone of pyrophosphate, diphosphonates and their technetium derivatives. Clin Sci Mol Med 54: 265–272

    CAS  Google Scholar 

  • Black DM, Cummings SR, Karpf DB, Cauley JA, Thompson DE, Nevitt MC, Bauer DC, Genant HK, Haskell WL, Marcus R, Ott SM, Torner JC, Quandt SA, Reiss TF, Ensrud KE (1996) Randomized trial of the effect of alendronate on the risk of fracture in women with existing vertebral fractures. Lancet 438: 1535–1541

    Article  Google Scholar 

  • Boissier S, Magnetto S, Frappart L, Cuzin B, Ebetino FH, Delmas PD, Clezardin P (1997) Bisphosphonates inhibit prostate and breast carcinoma cell adhesion to unmineralized and mineralized bone extracellular matrices. Cancer Res. 57: 3890–3894

    PubMed  CAS  Google Scholar 

  • Boyce RW, Paddock CL, Gleason JR, Sletsema WK, Eriksen EF (1995) The effects of risedronate on canine cancellous bone remodeling: three-dimensional kinetic reconstruction of the remodeling site. J Bone Miner Res 10: 211–221

    Article  PubMed  CAS  Google Scholar 

  • Buehrer T, Reitemeyer R (1940) The inhibiting action of minute amounts of sodium hexametaphosphate on the precipitation of calcium carbonate from ammoniacal solutions. J Phys Chem 44: 552–574

    Article  CAS  Google Scholar 

  • Cartier P (1957) Les constituants minéraux des tissus cacifiés. V. Séparation et identification de pyrophosphates dans le tissu osseux. Bull Soc Chim Biol 39: 169–180

    PubMed  CAS  Google Scholar 

  • Caswell AM, Russell RG (1988) Evidence that ecto-nucleoside-triphosphate pyrophosphatase serves in the generation of extracellular inorganic pyrophosphate in human bone and articular cartilage. Biochim Biophys Acta 966: 310–317

    Article  PubMed  CAS  Google Scholar 

  • Caswell AM, Ali SY, Russell RG (1987) Nucleoside triphosphate pyrophosphatase of rabbit matrix vesicles, a mechanism for the generation of inorganic pyrophosphate in epiphyseal cartilage. Biochim Biophys Acta 924: 276–283

    Article  PubMed  CAS  Google Scholar 

  • Ciosek CP, Magnin DR, Harrity TW, Logan JVH, Dickson JK, Gordon EM, Hamilton KA, Joli-bois KG, Kunselman LK, Lawrence RM, Mookhtiar KA, Rich LC, Slusarchyk DA, Sulsky RB, Biller SA (1993) Lipophilic 1,1-bisphosphonates are potent squalene synthase inhibitors and orally active cholesterol lowering agents in vivo. J Biol Chem 268: 24832–24837

    PubMed  CAS  Google Scholar 

  • Colucci S, Minielli V, Zambonin G, Grano M (1995) Etidronate inhibits osteoclast adhesion to bone surfaces but does not interfere with their specific recognition of single bone proteins. Ital J Miner Electrolyte Metab 9: 159–164

    CAS  Google Scholar 

  • David P, Nguyen H, Barbier A, Baron R (1996) The bisphosphonate tiludronate is a potent inhibitor of the osteoclast vacuolar H+-ATPase. J Bone Miner Res 11: 1498–1507

    Article  PubMed  CAS  Google Scholar 

  • Endo N, Rutledge SJ, Opas EE, Vogel R, Rodan GA, Schmidt A (1996) Human protein tyrosine phosphatase-o: alternative splicing and inhibition by bisphosphonates. J Bone Miner Res 11: 535–543

    Article  PubMed  CAS  Google Scholar 

  • Fast DK, Felix R, Dowse C, Neuman WF, Fleisch H (1978) The effects of diphosphonate on the growth and glycolysis of connective-tissue cells in culture. Biochem J 172: 97–107

    PubMed  CAS  Google Scholar 

  • Felix R, Fleisch H (1974) The pyrophosphatase and (Ca2+-Mg2+)-ATPbase activity of purified calf bone alkaline phosphatase. Biochim Biophys Acta 350: 84–94

    Article  PubMed  CAS  Google Scholar 

  • Felix R, Guenther HL, Fleich H (1984) The subcellular distribution of [14C] dichloromethylenebisphosphonate and [14C] 1-hydroxyethylidene-1,1-bisphosphonate in cultured calvaria cells. Calcif Tissue Int 36: 108–113

    Article  PubMed  CAS  Google Scholar 

  • Flanagan AM, Chambers TJ (1989) Dichloromethylene-bisphosphonate (C12MBP) inhibits bone resorption through injury to osteoclasts that resorb C12MBP-coated bone. Bone Miner 6: 33–43

    Article  PubMed  CAS  Google Scholar 

  • Fleisch H (1996) Bisphosphonates: mechanisms of action and clinical use. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of bone biology. Academic Press, San Diego, pp 1037–1052

    Google Scholar 

  • Fleisch H (1997a) Bisphosphonates: mechanisms of action. Endocr Rev 19(1): 80–100

    Article  Google Scholar 

  • Fleisch H (1997b) Bisphosphonates in bone disease. From the laboratory to the patient, 3rd edn. Parthenon, New York

    Google Scholar 

  • Fleisch H, Bisaz S (1962a) Isolation from urine of pyrophosphate, a calcification inhibitor. Am J Physiol 203: 671–675

    CAS  Google Scholar 

  • Fleisch H, Bisaz S (1962b) Mechanism of calcification: inhibitory role of pyrophosphate. Nature 1995: 911

    Article  Google Scholar 

  • Fleisch H, Bisaz S (1964) The inhibitory effect of pyrophosphate on calcium oxalate precipitation and its relation to urolithiasis. Experientia 20: 276

    Article  PubMed  CAS  Google Scholar 

  • Fleisch H, Neuman WF (1961) Mechanism of calcification: role of collagen, polyphosphates and phosphatase. Am J Physiol 200: 1296–1300

    CAS  Google Scholar 

  • Fleisch H, Bisaz S, Care AD (1964) Effect of orthophosphate on urinary pyrophosphate and the prevention of urolithiasis. Lancet 1: 1065–1067

    Article  PubMed  CAS  Google Scholar 

  • Fleisch H, Maerki J, Russell RGG (1966a) Effect of pyrophosphate on dissolution of hydroxyapatite and its possible importance in calcium homeostasis. Proc Soc Exp Biol Med 122: 317–320

    CAS  Google Scholar 

  • Fleisch H, Russell RGG, Straumann F (1966b) Effect of pyrophosphate on hydroxyapatite and its implications in calcium homeostasis. Nature 212: 901–903

    Article  CAS  Google Scholar 

  • Fleisch H, Straumann F, Schenk R, Bisaz S, Allgöwer M (1996c) Effect of condensed phosphates on calcification of chick embryo in tissue culture. Am J Physiol 211: 821–825

    Google Scholar 

  • Fleisch H, Russell RGG, Bisaz S, Termine JD, Posner AS (1968a) Influence of pyrophosphate on the transformation of amorphous to crystalline calcium phosphate. Calcif Tissue Res 2: 49–59

    Article  CAS  Google Scholar 

  • Fleisch H, Russell RGG, Bisaz S, Casey PA, Mühlbauer RC (1968b) The influence of pyrophosphate analogues (diphosphonates) on the precipitation and dissolution of calcium phosphate in vitro and in vivo. Calcif Tissue Res 2: 10–10A

    Article  Google Scholar 

  • Fleisch H, Russell RGG, Bisaz S, Mühlbauer RC, Williams DA (1970) The inhibitory effect of phosphonates on the formation of calcium phosphate crystals in vitro and on aortic and kidney calcification in vivo. Eur J Clin Invest 1: 12–18

    Article  PubMed  CAS  Google Scholar 

  • Fleisch H, Russell RGG, Francis MD (1969) Diphosphonates inhibit hydroxyapatite dissolution in vitro and bone resorption in tissue culture and in vivo. Science 165: 1262–1264

    Article  PubMed  CAS  Google Scholar 

  • Francis MD, Russell RGG, Fleisch H (1969) Diphosphonates inhibit formation of calcium phoshate crystals in vitro and pathological calcification in vivo. Science 165: 1264–1266

    Article  PubMed  CAS  Google Scholar 

  • Frith JC, Mönkkönen J, Blackburn GM, Russell RGG, Rogers MJ (1997) Clodronate and liposome-encapsulated clodronate are metabolized to a toxic ATP analog, adenosine 5’-(13-ydichloromethylene) triphosphate, by mammalian cells in vitro. J Bone Miner Res 12: 1358–1367

    Article  PubMed  CAS  Google Scholar 

  • Gasser AB, Morgan DB, Fleisch HA, Richelle LJ (1972) The influence of two disphosphonates on calcium metabolism in the rat. Clin Sci 43: 31–45

    PubMed  CAS  Google Scholar 

  • Green JR, Müller K, Jaeggi KA (1994) Preclinical pharmacology of CGP 42’446, a new, potent, heterocyclic bisphophonate compound. J Bone Miner Res 9: 745–751

    Article  PubMed  CAS  Google Scholar 

  • Hansen NM, Felix R, Bisaz S, Fleisch H (1976) Aggregation of hydroxyapatite crystals. Biochem Biophys. Acta 451: 549–559

    Article  PubMed  CAS  Google Scholar 

  • Hausmann E, Bisaz S, Russell RGG, Fleisch H (1970) The concentration of inorganic pyrophosphate in human saliva and dental calculus. Arch Oral Biol 15: 1389–1392

    Article  PubMed  CAS  Google Scholar 

  • Hortobagyi GN, Theriault RL, Porter L, Blayney D, Lipton A, Sinoff C, Wheeler H, Simeone JF, Seaman J, Knight RD, Heffernan M, Reitsma DJ (1996) Efficacy of pamidronate in reducing skeletal complications in patients with breast cancer and lytic bone metastases. N Engl J Med 335: 1785–1791

    Article  PubMed  CAS  Google Scholar 

  • Hsu HH, Anderson HC (1984) The deposition of calcium, pyrophosphate and phosphate by matrix vesicles isolated from fetal bovine epiphyseal cartilage. Calcif Tissue Int 36: 615–621

    Article  PubMed  CAS  Google Scholar 

  • Hughes DE, MacDonald BR, Russell RGG, Gowen M (1989) Inhibition of osteoclast-like cell formation by bisphosphonates in long-term cultures of human bone marrow. J Clin Invest 83: 1930–1935

    Article  PubMed  CAS  Google Scholar 

  • Hughes DE, Wright KR, Uy HL, Sasaki A, Yoneda T, Roodman GD, Mundy GR, Boyce BF (1995) Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo. J Bone Miner Res 10: 1478–1487

    Article  PubMed  CAS  Google Scholar 

  • Jung A, Russell RGG, Bisaz S, Morgan DB, Fleisch H (1970) Fate of intravenously injected pyrophosphate-32p in dogs. Am J Physiol 218: 1757–1764

    PubMed  CAS  Google Scholar 

  • Jung A, Bisaz S, Fleisch H (1973) The binding of pyrophosphate and two diphosphonates by hydroxyapatite crystals. Calcif Tissue Res 11: 269–280

    Article  PubMed  CAS  Google Scholar 

  • Jung A, Bisaz S, Gebauer U, Russell RGG, Morgan DB, Fleisch H (1974) The uptake and metabolism of [32p]pyrophosphate by mouse calvaria in vitro. Biochem J 140: 175–183

    PubMed  CAS  Google Scholar 

  • Liberman UA, Weiss SR, Bröll J, Minne HW, Quan H, Bell NH, Rodriguez-Portales J, Downs RW Jr, Dequeker J, Favus M, Seeman E, Recker RR, Capizzi T, Santora AC II, Lombardi A, Shah RV, Hirsch LJ, Karpf DB (1995) effect of oral alendronate on bone mineral density and the incidence of fractures in postmenopausal osteoporosis. N Engl J Med 333: 1437–1443

    Article  PubMed  CAS  Google Scholar 

  • Luckman SP, Hughes DE, Coxon FP, Russell RGG, Rogers MI (1988) Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including Ras. J Bone Miner Res 13: 581–589

    Article  Google Scholar 

  • Martodam RR, Thornton KS, Sica DA, D’Souza SM, Flora L, Mundy GR (1983) The effects of dichloromethylene diphosphonate on hypercalcemia and other parameters of the humoral hypercalcemia of malignancy in the rat Leydig cell tumor. Calcif Tissue Int 35: 512–519

    Article  PubMed  CAS  Google Scholar 

  • Masarachia P, Weinreb M, Balena R, Rodan GA (1996) Comparison of the distribution of 3Halendronate and 3H-etidronate in rat and mouse bones. Bone 19: 281–290

    Article  PubMed  CAS  Google Scholar 

  • McCarty DJ, Solomon SD, Warnock M, Paloyan (1971) Inorganic pyrophosphate concentrations in the synovial fluid of arthritic patients. J. Lab Clin Med 78: 216–229

    Google Scholar 

  • Menschutkin N (1865) Über die Einwirkung des Chloracetyls auf phosphorige Säure. Ann Chem Pharm 133: 317–320

    Article  Google Scholar 

  • Mühlbauer RC, Russell RGG, Williams DA, Fleisch H (1971) The effects of diphosphonates, polyphosphates and calcitonin on “immobilisation osteoporosis” in rats. Eur J Clin Invest 1: 336–344

    Google Scholar 

  • Mühlbauer RC, Bauss F, Schenk R, Janner M, Bosies E, Strein K, Fleisch H (1991) BM 21.0955, a potent new bisphosphonate to inhibit bone resorption. J Bone Miner Res 6: 1003–1011

    Article  PubMed  Google Scholar 

  • Mühlemann HR, Bowles D, Schatt A, Bernimoulin JP (1970) Effect of diphosphonate on human supragingival calculus. Helv Odontol Acta 14: 31–33

    PubMed  Google Scholar 

  • Mundy GR, Yoneda T (1995) Facilitation and suppression of bone metastasis. Clin Orthop 312: 34–44

    PubMed  Google Scholar 

  • Murakami H, Takahashi N, Sasaki T, Udagawa N, Tanaka S, Nakamura I, Zhang D, Barbier A, Suda T (1995) A possible mechanism of the specific action of bisphosphonate on osteoclasts: tiludronate perferentially affects polarized osteoclasts having ruffled borders. Bone 17: 137–144

    Article  PubMed  CAS  Google Scholar 

  • Ohya K, Yamada S, Felix R, Fleisch H (1985) Effect of bisphosphonates on prostaglandin synthesis by rat bone cells and mouse calvaria in culture. Clin Sci 69: 403–411

    PubMed  CAS  Google Scholar 

  • Opas EE, Rutledge SJ, Golub E, Stern A, Zimolo Z, Rodan GA, Schmidt A (1997) Alendronate inhibition of protein-tyrosine-phosphatase-megl. Biochem Parmacol 54: 721–727

    Article  CAS  Google Scholar 

  • Owens JM, Fuller K, Chambers TJ (1997) Osteoclast activation: potent inhibition by the bisphosphonate alendronate through a nonresorptive mechanism. J Cell Physiol 172: 79–86

    Article  PubMed  CAS  Google Scholar 

  • Reitsma PH, Bijvoet OLM, Verlinden-Ooms H, van der Wee-Pals LJA (1980) Kinetic studies of bone and mineral metabolism during treatment with (3-amino-1-hydroxy-propylidene)-1,1bisphosphonate (APD) in rats. Calcif Tissue Int 32: 145–157

    Article  PubMed  CAS  Google Scholar 

  • Reynolds JJ, Minkin C, Morgan DB, Spycher D, Fleisch H (1972) The effect of two diphosphonates on the resorption of mouse calvaria in vitro. Calcif Tissue Res 10: 302–313

    Article  PubMed  CAS  Google Scholar 

  • Robertson WG, Peacock M, Nordin BEC (1973) Inhibitors of the growth and aggregation of calcium oxalate crystals in vitro. Clin Chim Acta 43: 31–37

    Article  PubMed  CAS  Google Scholar 

  • Rogers MJ, Watts DJ, Russell RGG, Ji X, Xiong X, Blackburn GM, Bayless AW, Ebetino FH (1994) Inhibitory effects of bisphosphonates on growth of amoebae of the cellular slime mould Dictyostelium discoideum. J Bone Miner Res 10: 1029–1039

    Google Scholar 

  • Rogers MJ, Xiong X, Brown RJ, Watts DJ, Russell RGG, Bayless AW, Ebetino FH (1995) Structure-activity relationships of new heterocycle-containing bisphosphonates as inhibitors of bone resorption and as inhibitors of growth of Dictyostelium discoideum amoebae. Mol Pharmacol 47: 398–402

    PubMed  CAS  Google Scholar 

  • Rogers MJ, Chilton KM, Coxon FP, Lawry J, Smith MO, Suri S, Russell RGG (1996) Bisphosphonates induce apoptosis in mouse macrophage-like cells in vitro by a nitric oxide-independent mechanism. J Bone Miner Res 11: 1482–1491

    Article  PubMed  CAS  Google Scholar 

  • Rudy H (1960) Altes und Neues über kondensierte Phosphate. Benckiser, Ludwigshafen

    Google Scholar 

  • Russell RGG (1965) Excretion of inorganic pyrophosphate in hypophosphatasia. Lancet 2: 462–464

    Google Scholar 

  • Russell RGG, Bisaz S, Fleisch H, Currey HM, Rubinstein HM, Dietz A, Boussine I, Gabay R, Micheli A, Fallet G (1970a) Inorganic pyrophosphate in the plasma, urine and synovial fluid of patients with pyrophosphate arthropathy (chondrocalcinosis or pseudogout). Lancet 2: 899–902

    Article  CAS  Google Scholar 

  • Russell RGG, Mühlbauer RC, Bisaz S, Williams DA, Fleisch H (1970b) The influence of pyrophosphate, condensed phosphates, phosphonates and other phosphate compounds on the dissolution of hydroxyapatite in vitro and on bone resorption induced by parathyroid hormone in tissue culture and in thyroparathyroidectomised rats. Calcif Tissue Res 6: 183–196

    Article  CAS  Google Scholar 

  • Russell RGG, Bisaz S, Donath A, Morgan DB, Fleisch H (1971) Inorganic pyrophosphate in plasma in normal persons and in patients with hypophosphatasia, osteogenesis imperfecta and other disorders of bone. J Clin Invest 50: 961–969

    Article  PubMed  CAS  Google Scholar 

  • Sahni M, Guenther HL, Fleisch H, Collin P, Martin TJ (1993) Bisphosphonates act on rat bone resorption through the mediation of osteoblasts. J Clin Invest 91: 2004–2011

    Article  PubMed  CAS  Google Scholar 

  • Sasaki A, Boyce BF, Story B, Wright KR, Chapman M, Boyce R, Mundy GR, Yoneda T (1995) Bisphosphonate risedronate reduces metastatic human breast cancer burden in bone in nude mice. Cancer Res 55: 3551–3557

    PubMed  CAS  Google Scholar 

  • Sato M, Grasser W (1990) Effects of bisphosphonates on isolated rat osteoclasts as examined by reflected light microscopy. J Bone Miner Res 5: 31–40

    Article  PubMed  CAS  Google Scholar 

  • Sato M, Grasser W, Endo N, Akins R, Simmons H, Thompson DD, Golub E, Rodan GA (1991) Bisphosphonate action. Alendronate localization in rat bone and effects on osteoclast ultra-structure. J Clin Invest 88: 2095–2105

    Article  PubMed  CAS  Google Scholar 

  • Sauty A, Pecherstorfer M, Zimmer-Roth I, Fioroni P, Juillerat L, Markert M, Ludwig H, Leuen-berger P, Burckhardt P, Thiébaud D (1996) Interleukin-6 and tumor necrosis factor a levels after bisphosphonate treatment in vitro and in patients with malignancy. Bone 18: 133–139

    Article  PubMed  CAS  Google Scholar 

  • Schenk R, Merz WA, Mühlbauer R, Russell RGG, Fleisch H (1973) Effect of ethane-1-hydroxy1,1-diphosphonate (EHDP) and dichloromethylene diphosphonate (C12MDP) on the calcification and resorption of cartilage and bone in the tibial epiphysis and metaphysis of rats. Calcif Tissue Res 11: 196–214

    Article  PubMed  CAS  Google Scholar 

  • Schenk R, Eggli P, Fleisch H, Rosini S (1986) Quantitative morphometric evaluation of the inhibitory activity of new aminobisphosphonates on bone resorption in the rat. Calcif Tissue Int 38: 342–439

    Article  PubMed  CAS  Google Scholar 

  • Schibler D, Russell RGG, Fleisch H (1968) Inhibition by pyrophosphate and polyphosphate of aortic calcification induced by vitamin D3 in rats. Clin Sci 35: 363–372

    PubMed  CAS  Google Scholar 

  • Schmidt A, Rutledge SJ, Endo N, Opas EE, Tanaka H, Wesolowski G, Leu CT, Huang Z, Ramachandaran C, Rodan SB, Rodan GA (1996) Protein-tyrosine phosphatase activity regulates osteoclast formation and function: inhibition by alendronate. Proc Natl Acad Sci USA 93: 3068–3073

    Article  PubMed  CAS  Google Scholar 

  • Schweitzer DH, Oostendorp-van de Ruit M, van der Pluijm G, Löwik CWGM, Papapoulos SE (1995) Interleukin-6 and the acute phase response during treatment of patients with Paget’s disease with the nitrogen-containing bisphosphonate dimethylaminohydroxypropylidene bisphosphonate. J Bone Miner Res 10: 956–962

    Article  PubMed  CAS  Google Scholar 

  • Shinoda H, Adamek G, Felix R, Fleisch H, Schenk R, Hagan P (1983) Structure-activity relationships of various bisphosphonates. Calcif Tissue Int 35: 87–99

    Article  PubMed  CAS  Google Scholar 

  • Shipman CM, Roges MJ, Apperley JF, Russell RG, Croucher PI (1997) Bisphosphonates induce apoptosis in human myeloma cell lines: a novel anti-tumour activity. Br J Haematol 98: 665–672

    Article  PubMed  CAS  Google Scholar 

  • Skorey K, Ly HD, Kelly J, Hammond M, Ramachandran C, Huang Z, Gresser MJ, Wang Q (1997) How does alendronate inhibit protein-tyrosine phosphatases? J Biol Chem 272: 22472–22480

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi M, Sakamoto S, Yoshida M, Abe T, Isomura Y (1993) Studies on novel bone resorption inhibitors. I. Synthesis and pharmacological activities of aminomethylenebisphosphonate derivatives. Chem Pharm Bull Tokyo 41: 688–693

    Article  PubMed  CAS  Google Scholar 

  • Termine JD, Posner AS (1970) Calcium phosphate formation in vitro. I. Factors affecting initial phase separation. Arch Biochem Biophys 140: 307–317

    Article  PubMed  CAS  Google Scholar 

  • Trechsel U, Schenk R, Bonjour JP, Russell RGG, Fleisch H (1977) Relation between bone mineralization, Ca absorption, and plasma Ca in phosphonate-treated rats. Am J Physiol 232: E298–E305

    PubMed  CAS  Google Scholar 

  • Van Beek E, Hoekstra M, van de Ruit M, Löwik C, Papapoulos S (1994) Structural requirements for bisphosphonate actions in vitro. J Bone Miner Res 9: 1875–1882

    Article  PubMed  CAS  Google Scholar 

  • Van der Pluijm G, Vloedgraven H, van Beek E, van der Wee-Pals L, Löwik C, Papapoulos S (1996) Bisphosphonates inhibit the adhesion of breast cancer cells to bone matrices in vitro. J Clin Invest 98: 698–705

    Article  PubMed  Google Scholar 

  • Vitté C, Fleisch H, Guenther HL (1996) Bisphosphonates induce osteoblasts to secrete an inhibitor of osteoclast-mediated resorption. Endocrinology 137: 2324–2333

    Article  PubMed  Google Scholar 

  • Whyte MP (1994) Hypophosphatasia and the role of alkaline phosphatase in skeletal mineralization. Endocr Rev 15: 439–461

    PubMed  CAS  Google Scholar 

  • Yu X, Scholler J, Foged NT (1996) Interaction between effects of parathyroid hormone and bisphosphonate on regulation of osteoclast activity by the osteoblast-like cell line UMR-106. Bone 19: 339–345

    Article  PubMed  CAS  Google Scholar 

  • Zimolo Z, Wesolowski G, Rodan GA (1995) Acid extrusion is induced by osteoclast attachment to bone: inhibition by alendronate and calcitonin. J Clin Invest 96: 2277–2283

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fleisch, H. (1999). From Polyphosphates to Bisphosphonates and Their Role in Bone and Calcium Metabolism. In: Schröder, H.C., Müller, W.E.G. (eds) Inorganic Polyphosphates. Progress in Molecular and Subcellular Biology, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58444-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58444-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63597-7

  • Online ISBN: 978-3-642-58444-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics