Skip to main content

Cyclic Fatigue

  • Chapter
Ceramics

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 36))

Abstract

The failure of ceramic components under cyclic loading — often designated as cyclic fatigue — was already mentioned in Sect. 5.2.3. It was shown that the lifetime can be predicted from the results obtained in tests with constant load under the assumption that the same mechanism is responsible for constant and cyclic loading. This assumption has been confirmed by cyclic experiments on glass and porcelain [6.1]. For many ceramic materials (especially for alumina and zirconia) a real cyclic effect could be proved (see e.g. [6.2-6.8]). The crack growth rate in these materials is larger and the lifetime is shorter than that predicted from constant load tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Evans, A.G., Fuller, E.R. (1974): Crack propagation in ceramic materials under cyclic loading conditions, Metall. Trans., 5, 27–33.

    Google Scholar 

  2. Fett, T., Martin, G., Munz, D., Thun, G. (1991): Determination of da/dN-ΔK curves for small cracks in alumina in alternating bending tests, J. Mater. Sci. 26, 3320–3328

    Article  CAS  Google Scholar 

  3. Dauskardt, R.H., Marshall, D.B., Ritchie, R.O. (1990): Cyclic fatigue-crack propagation in magnesia-partially-stabilized zirconia ceramics, J. Am. Ceram. Soc. 73, 893–903.

    Article  CAS  Google Scholar 

  4. Steffen, A., Dauskardt, R.H., Ritchie, R.O. (1991): Cyclic fatigue life and crack-growth behavior of microstructurally small cracks in magnesia-partially-stabilized zirconia ceramics, J. Am. Ceram. Soc. 74, 1259–1268.

    Article  CAS  Google Scholar 

  5. Liu, S.-Y., Chen, I.-W. (1991): Fatigue of yttria-stabilized zirconia: II, Crack propagation, fatigue striations, and short-crack behaviour, J. Am. Ceram. Soc. 74, 1197–1205.

    Article  CAS  Google Scholar 

  6. Gilbert, J.G., Dauskardt, R.H., Ritchie, R.O. (1995): Behavior of cyclic fatigue cracks in monolithic silicon nitride, J. Am. Ceram. Soc. 78, 2291–2300.

    Article  CAS  Google Scholar 

  7. Dauskardt, R.H., James, M.R., Porter, J.R., Ritchie, R.O. (1992): Cyclic fatigue-propagation in a SiC-whisker-reinforced alumina ceramic composite: Long- and small-crack behaviour, J. Am. Ceram. Soc. 75, 759–771.

    Article  CAS  Google Scholar 

  8. Dauskardt, R.H., Dalgleish, B.J., Yao, D., Ritchie, R.O., Becher, P.F. (1993): Cyclic fatigue-propagation in a silicon carbide whisker-reinforced alumina composite: role of load ratio, J. Mater. Sci. 28, 3258–3266.

    Article  CAS  Google Scholar 

  9. Ueno, A., Kishimoto, H., Kawamoto, M., Asakura, M. (1991): Crack propagation behavior of sintered silicon nitride under cyclic loads of high stress ratio and high frequency, Engng. Fract. Mech. 40, 913–920

    Article  Google Scholar 

  10. Schmitt, R., Fett, T., Munz, D. (1996): Cyclic fatigue of zirconia, Fatigue Fract. Engng. Mater. Struct. 19, 1411–1420.

    Article  CAS  Google Scholar 

  11. Fett, T., Munz, D. (1998): A relation for cyclic crack growth in ceramics, J. Mater. Sci. Letters 17, 307–309.

    Article  CAS  Google Scholar 

  12. Fett, T., Himsolt, G., Munz, D. (1986): Cyclic fatigue of hot-pressed Si3N4 at high temperatures, Adv. Ceram. Mater. 1, 179–184.

    CAS  Google Scholar 

  13. Frei, H., Grathwohl, G. (1989): The fracture resistance of high performance ceramics by in situ experiments in the SEM, Beitr. Elektronenmikroskop. Direktabb. Oberfl. 22, 71–78.

    Google Scholar 

  14. Lathabai, S., Rödel, J., Lawn, B.R. (1991): Cyclic fatigue from frictional degradation at bridging grains in alumina, J. Am. Ceram. Soc. 74, 1340–1348.

    Article  CAS  Google Scholar 

  15. Dauskardt, R.H., Carter, W.C., Veirs, D.K., Ritchie, R.O. (1990): Transient subcri-tical crack growth behavior in transformation-toughened ceramics, Acta Metall. Mater. 38, 2327–2336.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Munz, D., Fett, T. (1999). Cyclic Fatigue. In: Munz, D., Fett, T. (eds) Ceramics. Springer Series in Materials Science, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58407-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58407-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63580-9

  • Online ISBN: 978-3-642-58407-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics