Skip to main content
Book cover

Ceramics pp 227–263Cite as

High-Temperature Behaviour

  • Chapter
  • 846 Accesses

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 36))

Abstract

Deformation and failure behaviour of ceramics at very high temperatures is predominantly governed by creep effects. In the case of noticeable creep, creep-induced deformation itself may lead to a design limit if the function of a component is affected by an excessive global deformation. Creep rupture consists in the formation and extension of creep cracks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cannon, W.R., Langdon, T.G. (1983): Creep of ceramics, J. Mater. Sci. 18, 1–50.

    Article  CAS  Google Scholar 

  2. Langdon, T.G. (1991): Creep, in: Advanced Ceramic Materials, ed. J.R. Brook, Pergamon Press, Oxford.

    Google Scholar 

  3. Kossowsky, R., Miller, D.G., Diaz, E.S. (1975): Tensile and creep strength of hot-pressed Si3N4, J. Mater. Sci. 10, 983–997.

    Article  CAS  Google Scholar 

  4. Arons, R.M., Tien, J.K. (1980): Creep and strain recovery in hot-pressed silicon nitride, J. Mater. Sci. 15, 2046–2058.

    Article  CAS  Google Scholar 

  5. Gebhard, W. (1981): Die Ermittlung der Warmfestigkeit keramischer Werkstoffe, DFVLR-Mitteilungen 81-03, Köln.

    Google Scholar 

  6. Carroll, D.F., Wiederhorn, S.M. (1989): High temperature creep testing of ceramics, in: Mechanical Testing of Engineering Ceramics at High Temperatures, eds. B.F. Dyson, R.D. Lohr, and R. Morrell, 135–149, Elsevier Applied Science, London.

    Google Scholar 

  7. Gürtler, M., Grathwohl, G. (1990): Tensile creep testing of sintered silicon nitride, Proceedings of the Fourth International Conference on ‘Creep and Fracture of Engineering Materials and Structures’, eds. B. Wilshire, R.W. Evans, The Institute of Metals, London, 399–408.

    Google Scholar 

  8. Andrade, E.N. (1910): The viscous flow in metals and allied phenomena, Proc. of the Royal Soc, London A84, 1.

    Google Scholar 

  9. Fett, T., Grathwohl, G., Gürtler, M., Munz, D. (1990): Prediction of tensile creep curves from bending tests, Proceedings of the Fourth International Conference on ‘Creep and Fracture of Engineering Materials and Structures’, eds. B. Wilshire, R.W. Evans, The Institute of Metals, London, 389–397.

    Google Scholar 

  10. McVetty, P.G. (1934): Working stresses for high temperature service, Mech. Engng. 56, 149.

    Google Scholar 

  11. Richter, G., Grathwohl, G. (1997): Oxidationsbedingte Gefügeänderungen und ihr Einfluß auf die Eigenschaften, Fortschrittsberichte der Deutschen Keramischen Gesellschaft 12, 37–52.

    CAS  Google Scholar 

  12. Norton, F.H. (1929): Creep of Steel at High Temperatures, McGraw Hill, New York.

    Google Scholar 

  13. Bailey, R.W. (1929): Creep of steel under simple and compound stresses, and the use of high initial temperature in steam power plants, Transactions of the World Power Conference, Vol. 3, 1089, Tokyo.

    Google Scholar 

  14. Söderberg, C.R. (1936): The interpretation of creep tests for machine design, Trans. ASME 58, 733–743.

    Google Scholar 

  15. Nadai, A. (1938): The influence of time upon creep. The hyperbolic sine creep law, in: S. Timoshenko Anniversary Volume, McMillan, New York.

    Google Scholar 

  16. Lange, F.F. (1983): High temperature deformation and fracture phenomena of polyphase Si3N4 materials, in: Progress in Nitrogen Ceramics, ed. F.L. Riley, Martinus Nijhoff Publ., The Hague, 467–490.

    Chapter  Google Scholar 

  17. Pintschovius, L., Gering, E., Munz, D., Fett, T., Soubeyroux, J.L. (1989): Determination of non-symmetric secondary creep behaviour of ceramics by residual stress measurement using neutron diffractometry, J. Mater. Sci. Letters 8, 811–813

    Article  CAS  Google Scholar 

  18. Fett, T., Keller, K., Mißbach, M., Munz, D., Pintschovius, L. (1988): Creep parameters of alumina containing a glass phase determined in bending creep tests, J. Am. Ceram. Soc. 71, 1046–1049.

    Article  CAS  Google Scholar 

  19. Chuang, T.J. (1986): Estimation of power-law creep parameters from bend test data, J. Mater. Sci. 21, 156–175.

    Article  Google Scholar 

  20. Fett, T., Keller, K., Munz, D. (1988): An analysis of the creep of hot-pressed silicon nitride in bending, J. Mater. Sci. 23, 467–474.

    Article  CAS  Google Scholar 

  21. Shetty, D.K., Gordon, R.S. (1979): Stress-relaxation technique for deformation studies in four-point bend tests: application to poly crystalline ceramics at elevated temperatures, J. Mater. Sci. 14, 2163–2171.

    Article  CAS  Google Scholar 

  22. Steinmann, D. (1982): Investigation of slow crack growth on hot-pressed silicon nitride at high temperatures (in German), Doct. Thesis, University of Karlsruhe.

    Google Scholar 

  23. Fett, T., Keller, K., Martin, G., Rosenfelder, O. (1991): Direct measurements of displacements in the inner roller span of four-point-bending creep tests, J. Test. Eval. 19, 334–337.

    Article  CAS  Google Scholar 

  24. Cohrt, H., Grathwohl, G., Thümmler, F. (1984): Non-stationary stress distribution in a ceramic bending beam during constant load creep, Res Mechanica 10, 55–71.

    Google Scholar 

  25. Fett, T. (1986): Stress distribution in a bending beam for cyclic loading under creep conditions, Res Mechanica 18, 95–115.

    Google Scholar 

  26. Fett, T. (1987): The outer fibre stress in a bending bar under primary creep conditions, J. Mater. Sci. Letters 6, 967–968.

    Article  Google Scholar 

  27. Finnie, I. (1966): Method of predicting creep in tension and compression from bending tests, J. Am. Ceram. Soc. 49, 218–220.

    Article  CAS  Google Scholar 

  28. Talty, P.K., Dirks, R.A. (1978): Determination of tensile and compressive creep behaviour of ceramic materials from bend tests, J. Mater. Sci. 13, 580–586.

    Article  CAS  Google Scholar 

  29. Fett, T. (1992): Measurement on nonsymmetric creep in A12O3 with a glass phase, J. Am. Ceram. Soc. 75, 1691–1693.

    Article  CAS  Google Scholar 

  30. Chen, CF., Chuang, T.-J. (1987): High temperature mechanical properties of SiAlON ceramic, creep characterization, Cer. Eng. Sci. Proc. 8, 796–804.

    Article  CAS  Google Scholar 

  31. Grathwohl, G. (1984): Regimes of creep and slow crack growth in high-temperature rupture of hot-pressed silicon nitride, in: Deformation of Ceramics II, Plenum Publishing Corporation, 573–586.

    Google Scholar 

  32. Quinn, G. (1986): Fracture mechanism maps for silicon nitride, in: Ceramic Materials and Components for Engines, ed. W. Bunk & H. Hausner, Verlag Deutsche Keramische Gesellschaft, Bad Honnef, Germany, 931–941.

    Google Scholar 

  33. Davidge, R.W. (1986): Perspectives of engineering ceramics in heat engines, presented at the Conference on “High Temperature Alloys for Gas Turbines and other Applications”, 6.-9. October, Liege, Belgium.

    Google Scholar 

  34. Fett, T., Mißbach, M., Munz, D. (1994): Failure behaviour of A12O3 with glassy phase at high temperatures, J. Europ. Ceram. Soc. 13, 197–209.

    Article  CAS  Google Scholar 

  35. Quinn, G. (1990): Fracture mechanism maps for advanced structural ceramics, Part 1: Methodology and hot-pressed silicon nitride, J. Mater. Sci. 25, 4361–4376; Part 2: Sintered silicon nitride, J. Mater. Sci. 25, 4377–4392.

    CAS  Google Scholar 

  36. Kromp, K., Haug, T., Pabst, R.F., Gerold, V. (1989): C* for ceramic materials?, Third Conference on Creep and Fracture of Engineering Materials and Structures, eds. B. Wilshire, D.R.J. Owen, The Institute of Metals, London, 1021–1032.

    Google Scholar 

  37. Martin, G., Fett, T., Munz, D. (1995): Creep crack growth in alumina with a glassy phase, J. Europ. Ceram. Soc. 15, 643–650.

    Article  CAS  Google Scholar 

  38. Fett, T., Martin, G. (1997): Creep crack growth measured in tension with a four-point bending device, Engng. Fract. Mech. 56, 443–448.

    Article  Google Scholar 

  39. Hutchinson, J.W. (1968): Plastic stress and strain fields at crack tip, J. Mech. Phys. Solids 16, 13–31.

    Article  Google Scholar 

  40. Rice, J.R., Rosengren, G.F. (1968): Plain strain deformation near crack tip in power law hardening material, J. Mech. Phys. Solids 16, 1–12.

    Article  Google Scholar 

  41. Kumar, V., German, M.D., Shih, C.F. (1981): An engineering approach for elastic-plastic failure analysis, EPRI-Report NP-1931, Palo Alto.

    Google Scholar 

  42. Riedel, H. (1987): Fracture at High Temperatures, Springer Verlag, Berlin.

    Google Scholar 

  43. Landes, J.D., Begley, J.A. (1976): A fracture mechanics approach to creep crack growth, in: Mechanics of Crack Growth, ASTM STP 590, 128–148.

    Chapter  Google Scholar 

  44. Webster, G.A. (1983): Crack growth at high temperature, in: Engineering Approaches to High Temperature Design, eds. B. Wilshire, D.R.J. Owen, Pineridge Press, Swansea, 1–58.

    Google Scholar 

  45. Harper, M.P., Ellison, E.G. (1977): The use of the C* parameter in predicting creep crack propagation rates, J. Strain Analysis 12, 35–51.

    Article  Google Scholar 

  46. Kanninen, M.F., Popelar, C.H. (1985): Advanced Fracture Mechanics, Oxford Engineering Science Series 15, Clarendon Press, Oxford.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Munz, D., Fett, T. (1999). High-Temperature Behaviour. In: Munz, D., Fett, T. (eds) Ceramics. Springer Series in Materials Science, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58407-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58407-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63580-9

  • Online ISBN: 978-3-642-58407-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics