Skip to main content

Electron Dynamics in Metal Clusters

  • Chapter
Theory of Atomic and Molecular Clusters

Part of the book series: Springer Series in Cluster Physics ((CLUSTER))

  • 297 Accesses

Abstract

Metallic clusters of between ten and a few thousand atoms offer the possibility to study the combined dynamics of electrons and ions in conditions that differ dramatically from those prevailing in bulk metal. During the last decade, clusters of simple metal atoms, such as sodium, have been the subject of both experimental and theoretical focus; quite robust features have emerged; for reviews see for instance [1,2]. Their electronic and optical properties are understood at first order in terms of the quantal arrangement of delocalized electrons (one per atom for alkali-metal clusters) moving in a mean field resulting from their mutual interaction and a smooth positive background ensuring neutrality. One sees a metal cluster as a mesoscopic Fermi liquid, the relevant parameter being the number of interacting fermions. This discrete feature leads to a shell structure just as in atoms and nuclei. The similarities between metal clusters and atomic nuclei are indeed striking, the most spectacular one being the occurrence of ground state deformations, the spherical symmetry being broken as a result of an unfilled upper electronic shell. It is the electrons, not the ions, that regulate the variations in shape and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. de Heer, Rev. Mod. Phys. 65, 611 (1993).

    Article  ADS  Google Scholar 

  2. M. Brack, Rev. Mod. Phys. 65, 611 (1993).

    Article  Google Scholar 

  3. W. Ekardt, Phys. Rev. Lett. 52, 1925 (1984); W. Ekardt, Phys. Rev. B 31, 6360 (1995).

    Article  ADS  Google Scholar 

  4. D. E. Beck, Phys. Rev. B 35, 732 (1987)

    Article  ADS  Google Scholar 

  5. C. Yannouleas, R. A. Broglia, M. Brack, and P. F. Bortignon, Phys. Rev. Lett. 63, 255 (1989), C. Yannouleas, E. Vigezzi, and R. A. Broglia, Phys. Rev. A 44, 5793 (1991).

    Article  ADS  Google Scholar 

  6. G. Guet and W. R. Johnson, Phys. Rev. B 45, 11283 (1992).

    Article  ADS  Google Scholar 

  7. S. A. Blundell and C. Guet, Z Phys.D 33, 253 (1995), and Surface Review and Letters 3, 519 (1996)

    Article  Google Scholar 

  8. Ll. Serra, G. B. Bachelet, N. Van Giai, and E. Lipparini, Phys. Rev. B48, 14708 (1993)

    ADS  Google Scholar 

  9. K. Yabana and G..F. Bertsch, Z. Phys. D32, 329 (1995)

    ADS  Google Scholar 

  10. M.Ya. Amusia, N.A. Cherepkov, Case Stud, At. Phys. 5, 47 (1975).

    Google Scholar 

  11. M. Madjet, C. Guet, and W. R. Johnson, Phys. Rev. A 51, 1327 (1995).

    Article  ADS  Google Scholar 

  12. D. J. Rowe, Rev. Mod. Phys. 40, 153 (1968)

    Article  ADS  Google Scholar 

  13. K. Yabana and G. F. Bertsch, Phys. Rev. B 54, 4484 (1996).

    Article  ADS  Google Scholar 

  14. H. Flocard, S. Koonin, and M. Weiss, Phys. Rev. C 17, 1682 (1978).

    Article  ADS  Google Scholar 

  15. F. Calvayrac, P. G. Reinhard, and E. Suraud, Phys. Rev. B 52, R17056 (1995).

    Article  ADS  Google Scholar 

  16. P. Ring and P. Schuck, The nuclear many-body problem, Berlin, Heidelberg, New York: Springer (1980).

    Book  Google Scholar 

  17. L’Eplattenier, E. Suraud, and P. G. Reinhard, Ann. Phys. (N.Y.) 244, 426 (1995).

    Article  ADS  Google Scholar 

  18. P. G. Reinhard and E. Suraud, Ann. Phys. (N.Y.) 239, 193 (1995), Ann. Phys. (N.Y.) 239, 216 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. C. Jarzynski, and G.F. Bertsch, preprint nucl-th/9507040, University of Washington.

    Google Scholar 

  20. O. Gunnarsson and B. I. Lundqvist, Phys. Rev. B 13, 4274 (1976)

    Article  ADS  Google Scholar 

  21. M. Gross and G. Guet, Z. Phys. D 33, 289 (1995).

    Article  ADS  Google Scholar 

  22. M. Gross and C. Guet, Phys. Rev. A 54, R2547 (1996).

    Article  ADS  Google Scholar 

  23. L. Feret, E. Suraud, F. Calvayrac, and P. G. Reinhard, J. Phys. B: At. Mol. Opt. Phys. 29, 4477 (1996).

    Article  ADS  Google Scholar 

  24. F. Chandezon, C. Guet, B. A. Huber, D. Jalabert, M. Maurel, E. Monnand, C. Ristori, and J. C. Rocco, Phys. Rev. Lett. 74, 3784 (1995). F. Chandezon, C. Guet, B. A. Huber, D. Jalabert, M. Maurel, E. Monnand, C. Ristori, and J. C. Rocco, Surface Review and Letters 3, 529 (1996).

    Article  ADS  Google Scholar 

  25. L. Plagne, Thesis, Université de Grenoble, France, in preparation.

    Google Scholar 

  26. P. M. Echenique, F. Flores, and R. H. Ritchie, Solid State Physics 43, 229 (1990).

    Article  Google Scholar 

  27. J. Lindhard, K. Dan. Vindensk. Selsk. Mat-Phys. Medd. 8 28 (1954).

    Google Scholar 

  28. S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, Sov. Phys. JETP 39, 375 (1974).

    ADS  Google Scholar 

  29. H. Hăkkinen and U. Landman, Phys. Rev. Lett. 71, 1023 (1993).

    Article  ADS  Google Scholar 

  30. G. L. Eesley, Phys. Rev. Lett. 51, 2140 (1983).

    Article  ADS  Google Scholar 

  31. H. E. Elsayed-Ali, T. B. Norris, M. A. Pessot, and G. A. Mourou, Phys. Rev. Lett. 58, 1212 (1987).

    Article  ADS  Google Scholar 

  32. R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, Phys. Rev. Lett. 58, 1680 (1987).

    Article  ADS  Google Scholar 

  33. W. S. Fann, R. Storz, H. W. K. Tom, and J. Bokor, Phys. Rev. Lett. 68, 2834 (1992).

    Article  ADS  Google Scholar 

  34. J. Y. Bigot, J. C. Merle, O. Cregut, and A. Daunois, Phys. Rev. Lett. 75, 4702 (1995).

    Article  ADS  Google Scholar 

  35. A. Domps, A.S. Krepper, V. Savalli, P.G. Reinhard, E. Suraud, Ann. Phys. (Leipz) 6, 468 (1997).

    Article  ADS  MATH  Google Scholar 

  36. L. Plagne and C. Guet, in preparation.

    Google Scholar 

  37. K. Yabana, T. Tazawa, Y. Abe, and P. Bozek, Phys. Rev. A 57, R3165 (1998), K. Yabana, Proc. int. symp. on Similarities and Differences between Atomic-Nuclei and-Clusters., Tsukuba, 1997, edited by Y. Abe et al, AIP Conf. Proc. No 416 (AIP, Woodbury, N.Y., (1997), p 148).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Guet, C., Plagne, L. (1999). Electron Dynamics in Metal Clusters. In: Jellinek, J. (eds) Theory of Atomic and Molecular Clusters. Springer Series in Cluster Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58389-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58389-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63570-0

  • Online ISBN: 978-3-642-58389-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics