Skip to main content

Quantum Mechanics of Hydrogen on Nickel and Palladium Clusters

  • Chapter
Theory of Atomic and Molecular Clusters

Part of the book series: Springer Series in Cluster Physics ((CLUSTER))

Abstract

Within the broad class of metal-hydrogen systems, clusters are of particular importance. Their high surface to volume ratio makes them ideal candidates for catalytic applications. Surface and bulk studies have shown that transport and vibrational spectroscopy of hydrogen are very sensitive to substrate structure. The wide variety of geometries exhibited by clusters offers a noteworthy opportunity to examine the effect of substrate geometry on hydrogen. Further, hydrogen’s small mass and uniquely large isotopic variation gives rise to a number of intrinsically quantum mechanical effects. For example, inverse isotope effects have been observed for hydrogen chemisorption on palladium clusters. Comparing classical and quantum mechanical Monte Carlo methods, the effects of quantum mechanics on cluster structure, population distribution, vibrational spectra, and rates for hydrogen motion are discussed for a single hydrogen on nickel and palladium clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Fayet, A. Kaldor, and D. M. Cox, J. Chem. Phys. 92, 254 (1990).

    Article  ADS  Google Scholar 

  2. J. Völkl and G. Alefeld. Diffusion in Solids: Recent Developments, edited by A. S. Nowick and J. J. Burton (Academic Press, New York, 1975), chapter 5.

    Google Scholar 

  3. S. W. Rick, D. L. Lynch, and J. D. Doll, J. Chem. Phys. 99, 8183 (1993).

    Article  ADS  Google Scholar 

  4. B. Chen, M. A. Gomez, M. Sehl, J. D. Doll, and D. L. Freeman, J. Chem. Phys. 105, 9686 (1996).

    Article  ADS  Google Scholar 

  5. M. S. Daw, and M. I. Baskes, Phys. Rev. B 29, 6443 (1984).

    ADS  Google Scholar 

  6. D. L. Lynch, S. W. Rick, M. A. Gomez, B. W. Spath, J. D. Doll, and L. R. Pratt, J. Chem. Phys. 97 5177 (1992).

    Article  Google Scholar 

  7. S. W. Rick, and J. D. Doll, Surface Science Letters. 302, L305 (1994).

    Article  ADS  Google Scholar 

  8. B. M. Rice, B. C. Garrett, M. L. Koszykowski, S. M. Foiles, and M. S. Daw, J. Chem. Phys. 92, 775 (1990).

    Article  ADS  Google Scholar 

  9. S. E. Wonchoba, and D. G. Truhlar, Phys. Rev. B 53, 11222 (1996).

    ADS  Google Scholar 

  10. A. F. Voter and S. P. Chen, Mater. Res. Soc. Symp. Proc. 82, 175 (1987)

    Article  Google Scholar 

  11. J. Jellinek, in Metal-Ligand Interactions: Structure and Reactivity, edited by N. Russo and D. R. Salahub. (Kluwer Academic Publishers, Dordrecht, 1996), p. 325; J. Jellinek and Z. B. Guvenc, in The Synergy Between Dynamics and Reactivity at Clusters and Surfaces edited by L. J. Farrugia (Kluwer Academic Publishers, Dordrecht, 1995), p. 217; M. J. LĂłpez and J. Jellinek, Phys. Rev. A 50, 1445 (1994); J. Jellinek and Z. B. Guvenc, Z. Phys. D. 26, 110 (1993).

    Google Scholar 

  12. M. S. Stave and A. E. DePristo, J. Chem. Phys 97, 3386 (1992); R. Fournier, M. S. Stave, and A. E. DePristo, J. Chem. Phys. 96, 1530 (1992).

    Article  ADS  Google Scholar 

  13. E. Curotto, A. Matro, D. L. Freeman, and J. D. Doll, J. Chem. Phys. 108, 729 (1998).

    Article  ADS  Google Scholar 

  14. H. Gronbeck, D. Tomanek, S. G. Kim, and A. Rosen, Zeitschrift FĂĽr Physik D 40, 469 (1997)

    Google Scholar 

  15. M. W. Lee, R. J. Wolf, and J. R. Ray, J. Alloys Compd. 231, 343 (1995); R. J. Wolf, M. W. Lee, and J. R. Ray, Phys. Rev. Lett. 73, 557 (1994); R. J. Wolf, M. W. Lee, and R. C. Davis, Phys. Rev. B. 48, 12415 (1993); R. J. Wolf, M. W. Lee, and J. R. Ray, Phys. Rev. B. 46, 8027 (1992).

    Article  Google Scholar 

  16. L. Lian, C.-X. Su, and P. B. Armentrout, J. Chem. Phys. 96, 7542 (1992).

    Article  ADS  Google Scholar 

  17. D. G. Vlachos, L. D. Schmidt, and R. Aris, J. Chem. Phys. 96, 6880 (1992).

    Article  ADS  Google Scholar 

  18. E. K. Parks, L. Zhu, J. Ho, and S. J. Riley, J. Chem. Phys. 100 7206 (1994).

    Article  Google Scholar 

  19. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery. Numerical Recip-ies in FORTRAN. The Art of Scientific Computing. Second Edition (Cambridge University Press, Cambridge, 1992).

    Google Scholar 

  20. A. B. Finnila, M. A. Gomez, C. Sebenik, C. Stenson, and J. D. Doll, Chem. Phys. Lett. 219, 343 (1994).

    Article  ADS  Google Scholar 

  21. Hydrogen in Metals I & II, edited by G. Alefeld and J. Völkl (Springer-Verlag, Berlin, 1978).

    Google Scholar 

  22. K. J. Maynard, A. D. Johnson, S. P. Daley, and S. T. Ceyer, Faraday Discuss. Chem. Soc. 91, 437 (1991).

    Article  Google Scholar 

  23. F. G. Amar and R. S. Berry, J. Chem. Phys. 85, 5943 (1986).

    Article  ADS  Google Scholar 

  24. S. W. Rick, D. L. Leitner, J. D. Doll, D. L. Freeman, and D. D. Frantz, J. Chem. Phys. 95, 6658 (1991).

    Article  ADS  Google Scholar 

  25. J. D. Doll, D. L. Freeman, and T. L. Beck, Advances in Chemical Physics 78, 61 (1990).

    Article  Google Scholar 

  26. D. D. Frantz, D. L. Freeman, and J. D. Doll, J. Chem. Phys. 93, 2769 (1990).

    Article  ADS  Google Scholar 

  27. J. E. Gubernatis, M. Jarrell, R. N. Silver, and D. S. Sivia, Phys. Rev. B. 44, 6011 (1991).

    Article  ADS  Google Scholar 

  28. G. A. Voth, D. Chandler, and W. H Miller, J. Chem Phys. 91, 7749 (1989).

    Article  ADS  Google Scholar 

  29. A. F. Voter, J. Chem. Phys. 82, 1890 (1985).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gomez, M.A., Chen, B., Freeman, D.L., Doll, J.D. (1999). Quantum Mechanics of Hydrogen on Nickel and Palladium Clusters. In: Jellinek, J. (eds) Theory of Atomic and Molecular Clusters. Springer Series in Cluster Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58389-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58389-6_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63570-0

  • Online ISBN: 978-3-642-58389-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics