Estimating Relative Free Energies from a Single Simulation of the Initial State

Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 4)


To estimate free energy differences from a single simulation of the initial state one may either, use a series expansion of the free energy around the initial state, make an assumption in regard to the functional form of the free energy or treat the mutation as a single step perturbation. Of these the perturbation approach holds the greatest promise. The perturbation approach is fast, easy to implement and does not depend on empirically derived parameters or assumptions. Given an appropriate reference state the perturbation approach can be used to rapidly estimate solvation or binding free energies of a wide range of related compounds for use in force field development or structure based drug design.


Free Energy Free Energy Difference Free Energy Calculation Perturbation Approach Hydration Free Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    van Gunsteren, W. F., Beutler, T. C., Fraternali, F., King, P. M., Mark, A. E., Smith, P. E.: Computation of free energy in practice: Choice of approximations and accuracy limiting factors. In: “ Computer Simulation of Biomolecular Systems, Theoretical and Experimental Applications”, Vol. 2, van Gunsteren, W. F., Weiner, P. K., Wilkinson A. J., Eds., Escom Science Publishers, Leiden, The Netherlands, (1993), pp. 315–348Google Scholar
  2. 2.
    Mark, A.E.: Free energy perturbation calculations. Encyclopaedia of Computational Chemistry, Wiley, New York, (1998) (in press).Google Scholar
  3. 3.
    van Gunsteren, W. F., King, P. M., Mark, A. E.: Fundamentals of drug design from a biophysical viewpoint. Quart. Rev. Biophysics 27 (1994) 435–481CrossRefGoogle Scholar
  4. 4.
    Smith, P. E., van Gunsteren, W. F.: Predictions of free energy differences from a single simulation of the initial state. J. Chem. Phys. 100 (1994) 577–585CrossRefGoogle Scholar
  5. 5.
    Hummer, G., Szabo, A.: Calculation of free energy differences from computer simulations of initial and fmial states. J. Chem. Phys. 105 (1996) 2004–2010CrossRefGoogle Scholar
  6. 6.
    Gerber, P. R., Mark, A. E., van Gunsteren, W. F.: An approximate but efficient method to calculate free energy trends by computer simulation: Application to dihydrofolate reductase-inhibitor complexes. J. Comp. Aid. Mol. Desgn 7 (1993) 305–323CrossRefGoogle Scholar
  7. 7.
    Radmer, R. J., Kollman, P. A.: Approximate free energy calculation methods and structure based ligand design. J. Comp. Aid. Mol. Desgn (in press)Google Scholar
  8. 8.
    Jayaram, B., Beveridge, D. L.: A simple method to estimate free energy from molecular simulation: Renormalization on the unit interval. J. Phys. Chem. 94 (1990) 7288–7293CrossRefGoogle Scholar
  9. 9.
    Amadei, A., Apol, M. E. F., Di Nola, A., Berendsen, H. J. C: The quasi-Gaussian entropy theory: Free energy calculations based on the potential energy distribution function. J. Chem. Phys. 104 (1996) 1560–1574CrossRefGoogle Scholar
  10. 10.
    Levy, R. M., Belhadj, M., Kitchen, D. B.: Gaussian fluctuation formula for electrostatic free energy changes. J. Chem. Phys. 95 (1991) 3627–3633CrossRefGoogle Scholar
  11. 11.
    Aqvist, J., Medina, C., Samuelsson, J.-E.: A new method for predicting binding affinity in computer-aided drug design. Prot. Eng. 7 (1994) 385–391CrossRefGoogle Scholar
  12. 12.
    Hansson, T., Aqvist, J.: Estimation of binding free energies for HIV proteinase inhibitors by molecular dynamics simulations. Prot. Eng. 8 (1995) 1137–1144CrossRefGoogle Scholar
  13. 13.
    Carlson, H. A., Jorgensen, W. L.: An extended linear response method for determining free energies of hydration. J. Phys. Chem. 99 (1995) 10667–10673CrossRefGoogle Scholar
  14. 14.
    McDonald, N. A., Carlson, H. A., Jorgensen, W. L.: Free energies of solvation in chloroform and water from a linear response approach. J. Phys. Org. Chem. 10 (1997) 563–576CrossRefGoogle Scholar
  15. 15.
    Liu, H., Mark, A. E., van Gunsteren, W. F.: Estimating the relative free energy of different molecular states with respect to a single reference state. J. Phys. Chem. 100 (1996) 9485–9494CrossRefGoogle Scholar
  16. 16.
    Mark, A. E., Xu, Y., Liu, H., van Gunsteren, W. F.: Rapid non-empirical approaches for estimating relative binding free energies. Acta Biochim. Polonica 42 (1995) 525–536Google Scholar
  17. 17.
    Schäfer, H., van Gunsteren, W. F., Mark, A. E.: Estimating relative binding free energies from an initial state: Hydration free energies. J. Phys. Chem. (submitted)Google Scholar
  18. 18.
    Beutler, T. C, Mark, A. E., van Schaik, R. C, Gerber, P. R., van Gunsteren, W. F.: Avoiding singularities and numerical instabilities in free energy calculations based on molecular simulations. Chem. Phys. Letters 222 (1994) 529–539CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  1. 1.Laboratorium für Physikalische ChemieETH ZentrumZürichSwitzerland
  2. 2.Department of BiologyUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations