Skip to main content

Simulation Studies of Protein-Ligand Interactions

  • Conference paper
  • 1933 Accesses

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 4))

Abstract

Protein-ligand interactions control a majority of cellular processes and are the basis of many drug therapies. First, this paper summarizes experimental approaches used to characterize the interactions between proteins and small molecules: equilibrium measurement of binding constant and standard free energy of binding and the dynamic approach of ligand extraction via atomic force microscopy. Next, the paper reviews ideas about the origin of different component terms that contribute to the the stability of protein-ligand complexes. Then, theoretical approaches to studying protein-small molecule interactions are addressed, including forced extraction of ligand and perturbation methods for calculating potentials of mean force and free energies for molecular transformation. Last, these approaches are illustrated with several recent studies from our laboratory: (1) binding of water in cavities inside proteins, (2) calculation of binding free energy from “first principles” by a new application of molecular transformation, and (3) extraction of a small ligand (xenon) from a hydrophobic cavity in mutant T4-lysozyme L99A.

This work has been supported by the U.S. National Science Foundation (grant MCB-9314854) and the U.S. National Institutes of Health’s National Center for Research Resources (grant RR08102 to the UNC/Duke Computational Structural Biology Resource).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baisera, M., Stepaniants, S., Izrailev, S., Oono, Y., Schulten, K.: Reconstructing potential energy functions from simulated force-induced unbinding processes. Biophys. J. 73 (1997) 1281–1287

    Article  Google Scholar 

  2. Bode, W., Papamokos, E., Musil, D.: The high-resolut ion X-ray crystal structure of the complex formed between subtilisin Carlsberg and eglin c, an elastase inhibitor from the leech Hirudo medicinalis. Eur. J. Biochem. 166 (1987) 673–692

    Article  Google Scholar 

  3. Boresch, S., Archontis, G., Karplus, M.: Free energy simulations: The meaning of the individual contributions from component analysis. Proteins: Str. Funct. Genet., 20 (1994) 25–33

    Article  Google Scholar 

  4. Connolly, M. L.: Analytical molecular surface calculation. J. Appl. Crystallogr. 16 (1983) 548–558

    Article  Google Scholar 

  5. Ernst, J. A., Clubb, R. T., Zhou, H.-X., Gronenborn, A. M., Clore, G. M. Demonstration of positionally disordered water within a protein hydrophobic cavity by NMR. Science 267 (1995) 1813–1815

    Article  Google Scholar 

  6. Eriksson, A. E., Baase, W. A., Wozniak, J. A., Matthews, B. W.: A cavitycontaining mutant of T4 lysozyme is stabilized by buried benzene. Nature 355 (1992) 371–373

    Article  Google Scholar 

  7. Grubmüller, H., Heymann, B., Tavan, P. Ligand binding and molecular mechanics calculation of the streptavidin-biotin rupture force. Science 271 (1996) 997–999

    Article  Google Scholar 

  8. van Gunsteren, W. F.: Methods for calculation of free energies and binding constants: Successes and problems. In Computer simulations of biomolecular systems. ESCOM, Leiden. (1989) 27–59

    Google Scholar 

  9. Florin, E. V., Moy, T. V., Gaub, H. E.: Adhesion forces between individual ligand-receptor pairs. Science 264 (1994) 415–417

    Article  Google Scholar 

  10. Gilson, M. K., Given, J. A., Bush, B. L., McCammon, J. A.: The statisticalthermodynamic basis for computation of binding affinities: A critical review. Biophys. J. 72 (1997) 1047–1069

    Article  Google Scholar 

  11. Hermans, J., Subramaniam, S.: The free energy of xenon binding to myoglobin from molecular dynamics simulation. Isr. J. Chem. 27 (1986) 225–227

    Google Scholar 

  12. Hermans, J.: A simple analysis of noise and hysteresis in free energy simulations. J. Phys. Chem. 95 (1991) 9029–9032

    Article  Google Scholar 

  13. Hermans, J., Yun, R. H., Anderson, A. G.: Precision of free-energies calculated by molecular dynamics simulations of peptides in solution. J. Comp. Chem. 13 (1992) 429–442

    Article  Google Scholar 

  14. Hermans, J., Wang, L.: Inclusion of loss of translational and rotational freedom in theoretical estimates of free energies of binding. Application to a complex of benzene and mutant T4-lysozyme. J. Am. Chem. Soc. 119 (1997) 2707–2714

    Article  Google Scholar 

  15. Hermans, J. Sigma documentation. University of North Carolina. (1994) http://femto.med.unc.edu/SIGMA

  16. Hermans, J., Zhang, L., Xia, X. Dowser documentation. University of North Carolina. (1994) http://femto.med.unc.edu/DOWSER

  17. Hofacker, L, Schulten, K.: Oxygen and proton pathways in cytochrome-c oxidase. Proteins: Str. Funct. Genet. 29 (1998) 100–107

    Article  Google Scholar 

  18. Humphrey, W.F., Dalke, A., Schulten, K.: VMD-Visual molecular dynamics. J. Mol. Graphics 14 (1996) 33–38

    Article  Google Scholar 

  19. Izrailev, S., Stepaniants, S., Baisera, M., Oono, Y., Schulten, K.: Molecular dynamics study of unbinding of the avidin-biotin complex. Biophys. J. 72 (1997) 1568–1581

    Article  Google Scholar 

  20. Jedrzejas, M. J., Singh, S. Brouillette, W. J. Air, G. M. Luo, M. A.: 1995. Strategy for theoretical binding constant, Ki calculation for neuraminidase aromatic inhibitors, designed on the basis of the active site structure of influenza virus neuraminidase. Proteins: Struct. Funct. Genet. 23 (1995) 264–277

    Article  Google Scholar 

  21. Leech, J., Prins, J., Hermans, J.: SMD: Visual steering of molecular dynamics for protein design. IEEE Computational Science & Engineering 3(4): (1996) 38–45

    Article  Google Scholar 

  22. Mann, G., Prins, J., Hermans, J.: Energetics of forced extraction of ligand: Simulation studies of Xe in mutant T4 lysozyme as a simple test system. Bioohys. J., in preparation (1998)

    Google Scholar 

  23. Mark, A. E., van Gunsteren, W. F.: Decomposition of the free energy of a system in terms of specific interactions. Implications for theoretical and experimental studies. J. Mol. Biol. 240 (1994) 167–176

    Article  Google Scholar 

  24. McPhalen, C. A., James, M. N. G.: Structural comparison of two serine proteinase-protein inhibitor complexes: Eglin-C-Subtilisin Carlsberg and CI-2-subtilisin novo. Biochemistry 27 (1988) 6582–6598

    Article  Google Scholar 

  25. Morton, A., Baase, W. A., Matthews, B. W.: Energetic origins of specificity of ligand binding in an interior nonpolar cavity of T4 lysozyme. Biochemistry 34 (1995) 8564–8575.

    Article  Google Scholar 

  26. Moy, V. T., Florin, E. V., Gaub, H. E.: Intermolecular forces and energies between ligands and receptors. Science 266 (1994) 257–259

    Article  Google Scholar 

  27. Nelson, M., Humphrey, W., Gursoy, A., Dalke, A., Kalé, L., Skeel, R., Schulten, K., Kufrin, R.: MDScope: A visual computing environment for structural biology. Comp. Phys. Comm. 91 (1995) 111–134

    Article  Google Scholar 

  28. Page, M. L., Jencks, W. P.: Entropic contributions to rate accelerations in enzymic and intramolecular interactions and the chelate effect. Proc. Natl. Acad. Sci. USA 68 (1971) 1678–1683

    Article  Google Scholar 

  29. Jencks, W. P.: On the attribution and additivity of binding energies. Proc. Natl. Acad. Sci. USA 78 (1981) 4046–4050

    Article  Google Scholar 

  30. Quillin, M. L., Baase, W. A., Matthews, B. W.: Binding of small electron-dense ligands in large protein cavities. In International union of crystallography. XII congress and general assembly. American crystallographic association, Seattle, WA, USA. (1996) abstract C215.

    Google Scholar 

  31. Holtzer, A.: The ‘cratic’ correction and related fallacies. Biopolymers 34 (1995) 595–602

    Article  Google Scholar 

  32. Sharp, K. A., Honig, B.: Electrostatic interactions in macromolecules: Theory and applications. Ann. Rev. Biophys. Biophys. Chem. 19 (1990) 301–332

    Article  Google Scholar 

  33. Sitkoff, D., Sharp, K. A., Honig, B.: Accurate calculation of hydration free energies using macroscopic solvent models. J. Phys. Chem. 98 (1994) 1978–1988

    Article  Google Scholar 

  34. Steinberg, I. Z., Scheraga, H. A.: Entropy changes accompanying association reactions of proteins. J. Biol. Chem. 238 (1963)172–181.

    Google Scholar 

  35. Tidor, B., Karplus, M.: The contribution of vibrational entropy to molecular association. J. Mol. Biol. 238 (1994) 405–414.

    Article  Google Scholar 

  36. Vorobjev, Y., Almagro, J. C., Hermans, J.: Conformational free energy calculated by a new method from dynamics simulation and continuum dielectric model discriminates between native and intentionally misfolded conformations of proteins. Proteins: Struct. Funct. Genet., submitted for publication (1998)

    Google Scholar 

  37. Zhang, L., Hermans, J.: Hydrophilicity of cavities in proteins. Proteins: Str. Funct. Genet. 24 (1996) 433–438

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hermans, J., Mann, G., Wang, L., Zhang, L. (1999). Simulation Studies of Protein-Ligand Interactions. In: Deuflhard, P., Hermans, J., Leimkuhler, B., Mark, A.E., Reich, S., Skeel, R.D. (eds) Computational Molecular Dynamics: Challenges, Methods, Ideas. Lecture Notes in Computational Science and Engineering, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58360-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58360-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63242-9

  • Online ISBN: 978-3-642-58360-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics