Skip to main content

Mathematical Model of the Nucleic Acids Conformational Transitions with Hysteresis over Hydration—Dehydration Cycle

  • Conference paper
Computational Molecular Dynamics: Challenges, Methods, Ideas

Abstract

A model of the conformational transitions of the nucleic acid molecule during the water adsorption-desorption cycle is proposed. The nucleic acid-water system is considered as an open system. The model describes the transitions between three main conformations of wet nucleic acid samples: A-, B- and unordered forms. The analysis of kinetic equations shows the non-trivial bifurcation behaviour of the system which leads to the multistability. This fact allows one to explain the hysteresis phenomena observed experimentally in the nucleic acid-water system. The problem of self-organization in the nucleic acid-water system is of great importance for revealing physical mechanisms of the functioning of nucleic acids and for many specific practical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Miyazawa, T.: Conformational aspects and biological functions of biomolecules. J. Mol. Struct. 126 (1985) 493–508

    Article  Google Scholar 

  2. Saenger, W.: Prinsiples of nucleic acid structure. Springer-Verlag, Berlin (1984) 584

    Book  Google Scholar 

  3. Goodfellow, J.M., Cruzeiro-Hansson, L., Norberto de Souza, O., Parker, K., Sayle, T., Umrania, Y.: DNA structure, hydration and dynamics. Int. J. of Radiation Biology 66 (1994) 471–478

    Article  Google Scholar 

  4. Zehfus, M.H., Johnson, W.C.: Conformation of P-form DNA. Biopolymers 23 (1984) 1269–1281

    Article  Google Scholar 

  5. Maleyev, V. Ya., Semenov, M. A., Gasan, A.. L, Kashpur, V. A.: Physical propoties of the DNA-water system. Biopysics 38 (1993) 789–811

    Google Scholar 

  6. Krumhansl, J.A., Wysin, G.M., Alexander, D.M., Garcia, A., Lohmdahl, P.S., Layane, S.P.: In: Structure and motions: membranes, nucleic acids and proteins. (Clementi, E., Corongin, G., Sarma, M.H., Sarma, R.H., eds) Adenine Press, New York (1985) 407–415

    Google Scholar 

  7. Christiansen, P.L., Muto, V.: Nonlinear models of DNA dynamics. Physica D 68 (1993) 93–96

    Article  MATH  Google Scholar 

  8. Volkov, S.N.: Conformational transitions and the mechanism of transmission of long-range effects in DNA. Preprint ITP-88-12E, Kiev (1988) 22

    Google Scholar 

  9. Krumhansl, J.A., Alexander, D.M.: Nonlinear dynamics and conformational exitations in biomolecular materials. In: Structure and dynamics: nucleic acids and proteins. (Clementi, E.; Sarma, R.H., eds) Adenine Press, New York (1983) 61–80

    Google Scholar 

  10. Theory of helix-coil transitions in biopolymers. (Poland, D., Scheraga, H.A., eds) Academic Press, New York (1970)

    Google Scholar 

  11. Eisenstein, M., Shakked, Z.: Hydrat ion patterns and intermolecular interactions in A-DNA crystal structures. Implications for DNA recognition. J. Mol. Biol. 248 (1995) 662–678

    Article  Google Scholar 

  12. Wetzel, R., Zirwer, D., Becker, M.: Optical anisotropy of oriented deoxyribonucleic acid films of different water content. Biopolymers 8 (1969) 391–401

    Article  Google Scholar 

  13. Falk, M., Hartman, K.A., Lord, R.C.: Hydration of deoxyribonucleic acid. I. A gravimetric study. J. Am. Chem. Soc. 84 (1962) 3843–3846

    Article  Google Scholar 

  14. Volkov, V.V., Gasan, A.L, Maleev, V.Ya.: The effect of glycerol on hysteresis phenomena in DNA. Preprint IRE-386, Kharkov (1989) 16 (in Russian)

    Google Scholar 

  15. Lahajnar, G., Zupancic, I., Rupprecht, A.: Proton NMR relaxation and diffusion study of water sorbed in oriented DNA and hyaluronic acid samples. In: Biophysics of Water (Pranks, F., Mathias, S., eds) Wiley, New York (1982) 231–234

    Google Scholar 

  16. Kochoyan, M., Leroy, J.L.: Hydration and solution structure of nucleic acids. Current Opinion in Structural Biology 5 (1995) 329–333

    Article  Google Scholar 

  17. Lindsay, S. M., Lee, S. A., Powell, J. M., Weidlich, T., DeMarko, C., Lewen, G. D., Tao, N. J., Rupprecht, A.: The origin of the A to B transition in DNA fibers and films. Biopolymers 27 (1988) 1015–1043

    Article  Google Scholar 

  18. Ivanov, V.I., Minchenkova, L.E., Minyat, E.E., Schyolkina, A.K.: Cooperative transitions in DNA with no separation of strands. Cold Spring Harbor Symposia on Quantitative Biology 47 (1983) 243–250

    Article  Google Scholar 

  19. Gascoyne, P.R.C., Pethig, R.: Experimental and theoretical aspects of hydration isotherms for biomolecules. J. Chem. Soc. Faradey Trans. 1 (1977) 171–180

    Article  Google Scholar 

  20. Starikov, E.B., Bolbukh, T.V., Semenov M.A.: The study of nucleic acid hydration isotherms. Preprint IRE-359, Kharkov (1987) 19 (in Russian)

    Google Scholar 

  21. d’Arcy, R.L., Watt, J.C.: Analysis of sorption isotherm of nonhomogeneous sorbents. Trans. Faraday Soc. 66 (1970) 1236–1245

    Article  Google Scholar 

  22. Nicolis, G., Prigogine, I.: Self-organization in nonequilibrium systems. John Willey & Sons, New York (1977) 512

    MATH  Google Scholar 

  23. Hippel, P.H. von, Wang, K.-Y.: Dynamic aspects of native DNA structure: kinetics of the formaldehyde reaction with calf thymus DNA. J. Mol. Biol. 61 (1971) 587–613

    Article  Google Scholar 

  24. Porschke, D., Eigen, M.: Cooperative nonenzymic base recognition. III. Kinetics of the helix-coil transition of the oligoribouridylic oligoriboadenylic acid system and of oligoriboadenylic acid alone at acidic pH. J. Mol. Biol. 62 (1971) 361–381

    Article  Google Scholar 

  25. Tolstorukov, M.Ye., Gatash, S.V., Maleev, V.Ya.: Self-organization and nonlinear dynamics of nucleic acid-water system. Special Issue of Int. J. Bif. Chaos (in press)

    Google Scholar 

  26. Porschke D.: Elementary steps of base recognition and helix-coil transitions in nucleic acids. Mol. Biol. Biochem. Biophys. 24 (1977) 191–218

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tolstorukov, M.Y., Virnik, K.M. (1999). Mathematical Model of the Nucleic Acids Conformational Transitions with Hysteresis over Hydration—Dehydration Cycle. In: Deuflhard, P., Hermans, J., Leimkuhler, B., Mark, A.E., Reich, S., Skeel, R.D. (eds) Computational Molecular Dynamics: Challenges, Methods, Ideas. Lecture Notes in Computational Science and Engineering, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58360-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58360-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63242-9

  • Online ISBN: 978-3-642-58360-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics