Advertisement

Computation of Essential Molecular Dynamics by Subdivision Techniques

Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 4)

Abstract

The paper presents basic concepts of a new type of algorithm for the numerical computation of what the authors call the essential dynamics of molecular systems. Mathematically speaking, such systems are described by Hamiltonian differential equations. In the bulk of applications, individual trajectories are of no specific interest. Rather, time averages of physical observables or relaxation times of conformational changes need to be actually computed. In the language of dynamical systems, such information is contained in the natural invariant measure (infinite relaxation time) or in almost invariant sets (“large” finite relaxation times). The paper suggests the direct computation of these objects via eigenmodes of the associated Frobenius-Perron operator by means of a multilevel subdivision algorithm. The advocated approach is different from both Monte-Carlo techniques on the one hand and long term trajectory simulation on the other hand: in our setup long term trajectories are replaced by short term sub-trajectories, Monte-Carlo techniques are connected via the underlying Frobenius-Perron structure. Numerical experiments with the suggested algorithm are included to illustrate certain distinguishing properties.

Keywords

Hamiltonian System Invariant Measure Energy Cell Essential Dynamic Subdivision Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.P. Allen and D.J. Tildesley. Computer Simulations of Liquids. Clarendon Press, Oxford (1990)Google Scholar
  2. 2.
    A. Amadei, A.B.M. Linssen, and H.J.C. Berendsen. Essential dynamics on proteins. Proteins 17 (1993) 412–425CrossRefGoogle Scholar
  3. 3.
    G. Benettin and A. Giorgilli. On the Hamiltonian interpolation of near to the identity symplectic mappings with applications to symplectic integration algorithms. J. Stat. Phys. 74 (1994)Google Scholar
  4. 4.
    R. Bulirsch. Die Mehrzielmethode zur numerischen Lösung von nichtlinearen Randwertproblemen und Aufgaben der optimalen Steuerung. Tech. Rep., Carl-Cranz-Gesellschaft (1971)Google Scholar
  5. 5.
    M. Dellnitz and A. Hohmann. A subdivision algorithm for the computation of unstable manifolds and global attractors. Numerische Mathematik 75 (1997) 293–317MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    M. Dellnitz and O. Junge. On the approximation of complicated dynamical behavior. To appear in SIAM J. Num. Anal., 1998. Also available as Preprint SC 96-35, Konrad Zuse Zentrum, Berlin (1996)Google Scholar
  7. 7.
    P. Deuflhard and F. Bornemann. Numerische Mathematik II — Integration gewöhnlicher Differentialgleichungen. Walter de Gruyter, Berlin, New York (1994)Google Scholar
  8. 8.
    P. Deuflhard, M. Dellnitz, O. Junge, and Ch. Schütte. Computation of essential molecular dynamics by subdivision techniques I: Basic concept. Preprint SC 96-45, Konrad Zuse Zentrum, Berlin (1996)Google Scholar
  9. 9.
    P. Deuflhard, W. Huisinga, A. Fischer, Ch. Schütte. Identification of Almost Invariant Aggregates in Nearly Uncoupled Markov Chains. Preprint, Preprint SC 98-03, Konrad Zuse Zentrum, Berlin (1998)Google Scholar
  10. 10.
    H. Grubmueller and P. Tavan. Molecular dynamics of conformational substates for a simplified protein model. J. Chem. Phys. 101 (1994)Google Scholar
  11. 11.
    E. Hairer. Backward analysis of numerical integrators and symplectic methods. Annals of Numerical Mathematics 1 (1994)Google Scholar
  12. 12.
    E. Hairer and Ch. Lubich. The life-span of backward error analysis for numerical integrators. Numer. Math. 76 (1997) 441–462MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    E. Hairer and D. Stoffer. Reversible long-term integration with variable step sizes. Report (1995)Google Scholar
  14. 14.
    H. Hsu. Global analysis by cell mapping. Int. J. Bif. Chaos 2 (1992) 727–771zbMATHCrossRefGoogle Scholar
  15. 15.
    G. Keller. Private communication (1998)Google Scholar
  16. 16.
    D. Ruelle. A measure associated with axiom A attractors. Amer. J. Math. 98 (1976) 619–654MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    J.M. Sanz-Serna and M.P. Calvo. Numerical Hamiltonian Systems. Chapman and Hall, London, Glasgow, New York, Tokyo (1994)Google Scholar
  18. 18.
    J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer Verlag, Berlin, Heidelberg, New York, Tokyo (1980)Google Scholar
  19. 19.
    Ch. Schütte, A. Fischer, W. Huisinga, P. Deuflhard. A Hybrid Monte-Carlo Method for Essential Molecular Dynamics. Preprint, Preprint SC 98-04, Konrad Zuse Zentrum, Berlin (1998)Google Scholar
  20. 20.
    P. Walters. An Introduction to Ergodic Theory. Springer Verlag, Berlin, Heidelberg, New York, Tokyo (1981)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  1. 1.Konrad Zuse Zentrum BerlinBerlinGermany
  2. 2.Fachbereich MathematikFreie Universität BerlinBerlinGermany
  3. 3.Mathematisches InstitutUniversität BayreuthBayreuthGermany

Personalised recommendations