Skip to main content

Abstract

Molecular dynamics (MD) simulations of proteins provide descriptions of atomic motions, which allow to relate observable properties of proteins to microscopic processes. Unfortunately, such MD simulations require an enormous amount of computer time and, therefore, are limited to time scales of nanoseconds. We describe first a fast multiple time step structure adapted multipole method (FAMUSAMM) to speed up the evaluation of the computationally most demanding Coulomb interactions in solvated protein models, secondly an application of this method aiming at a microscopic understanding of single molecule atomic force microscopy experiments, and, thirdly, a new method to predict slow conformational motions at microsecond time scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Levitt and Shneior Lifson. Refinement of protein conformation using a macromolecular energy minimization procedure. J. Mol. Biol, 46: 269–279, 1969.

    Article  Google Scholar 

  2. J. A. McCammon, B. R. Gelin, and M. Karplus. Dynamics of folded proteins. Nature (London), 267: 585–590, 1977.

    Article  Google Scholar 

  3. W. F. van Gunsteren and H. J. C. Berendsen. Algorithms for macromolecular dynamics and constraint dynamics. Mol. Phys., 34(5): 1311–1327, 1977.

    Article  Google Scholar 

  4. Olle Edholm, Oliver Berger, and Fritz Jähnig. Structure and fluctuations of bacteriorhodopsin in the purple membrane. J. Mol. Biol, 250: 94–111, 1995.

    Article  Google Scholar 

  5. M. Levitt and R. Sharon. Accurate simulation of protein dynamics in solution. Proc. Natl. Acad. Sci. USA, 85: 7557–7561, 1988.

    Article  Google Scholar 

  6. Walter Nadler, Axel T. Brünger, Klaus Schulten, and Martin Karplus. Molecular and stochastic dynamics of proteins. Proc. Natl. Acad. Sci. USA, 84: 7933–7937, Nov. 1987.

    Article  Google Scholar 

  7. H. Kovacs, A.E. Mark, J. Johansson, and W.F. van Gunsteren. The effect of environment on the stability of an integral membrane helix: Molecular dynamics simulations of surfactant protein C in chloroform, methanol and water. J. Mol. Biol, 247: 808–822, 1995.

    Google Scholar 

  8. G.H. Peters, D.M.F van Aalten, O. Edholm, S. Toxvaerd, and R. Bywater. Dynamics of proteins in different solvent systems: Analysis of essential motion in lipases. Biophys. J., 71: 2245–2255, 1996.

    Article  Google Scholar 

  9. M. C. Nuss, W. Zinth, W. Kaiser, E. Kölling, and D. Oesterhelt. Femtosecond spectroscopy of the first events of the photochemical cycle in bacteriorhodopsin. Chem. Phys. Lett, 117(1): 1–7, 1985.

    Article  Google Scholar 

  10. Feng Zhou, Andreas Windemuth, and Klaus Schulten. Molecular-dynamis study of the proton pump cycle of bacteriorhodopsin. Biochem., 32(9): 2291–2306, 1993.

    Article  Google Scholar 

  11. B. Leimkuhler and R. D. Skeel. J. Comp. Phys., 112: 117, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  12. B.J. Leimkuhler, S. Reich, and R. D. Skeel. Integration methods for molecular dynamics. In Mathematical approaches to biomolecular structure and dynamics, Seiten 161–185, New York, 1996. Springer.

    Google Scholar 

  13. R. D. Skeel, G. H. Zhang, and T. Schlick. A family of symplectic integrators: Stability, accuracy, and molecular dynamics applications. SIAM J. Scient. COMP., 18: 203–222, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Ahmad and L. Cohen. A numerical integration scheme for the iV-body gravitational problem. J. Comp. Phys., 12: 389–402, 1973.

    Article  MATH  Google Scholar 

  15. W. B. Streett, D. J. Tildesley, and G. Saville. Multiple time step methods in molecular dynamics. Mol. Phys., 35: 639–648, 1978.

    Article  Google Scholar 

  16. R. C. Y. Chin, G. W. Hedstrom, and F. A. Howes. Considerations on Solving Problems with Multiple Scales. Academic Press, Orlando, Florida, 1985.

    Google Scholar 

  17. Andreas Windemuth. Dynamiksimulation von Makromolekülen. Diplomarbeit, Technical University of Munich, Physics Department, T 30, James-Franck-Street, 8046 Garching, August 1988.

    Google Scholar 

  18. Mark E. Tuckerman, Glenn J. Martyna, and Bruce J. Berne. Molecular dynamics algorithm for condensed systems with multiple time scales. J. Chem. Phys., 93(2): 1287–1291, Jul. 1990.

    Article  Google Scholar 

  19. Helmut Grubmüller, Helmut Heller, Andreas Windemuth, and Klaus Schulten. Generalized Verlet algorithm for efficient molecular dynamics simulations with long-range interactions. Mol. Sim., 6: 121–142, 1991.

    Article  Google Scholar 

  20. Mark E. Tuckerman and Bruce J. Berne. Molecular dynamics algorithm for multiple time scales: Systems with disparate masses. J. Chem. Phys., 94(2): 1465–1469, January 1991.

    Article  Google Scholar 

  21. Mark E. Tuckerman, Bruce J. Berne, and Glenn J. Martyna. Molecular dynamics algorithm for multiple time scales: Systems with long range forces. J. Chem. Phys., 94(10): 6811–6815, May 1991.

    Article  Google Scholar 

  22. Robert D. Skeel, Jeffrey J. Biesiadecki, and Daniel Okunbor. Symplectic integration for macromolecular dynamics. In Proceedings of the International Conference Computation of Differential Equations and Dynamical Systems. World Scientific Publishing Co., 1992. in press.

    Google Scholar 

  23. Robert D. Skeel and Jeffrey J. Biesiadecki. Symplectic integration with variable stepsize. Ann. Num. Math., 1: 191–198, 1994.

    MathSciNet  MATH  Google Scholar 

  24. Helmut Grubmüller. Molekulardynamik von Proteinen auf langen Zeitskalen. Doktorarbeit, Technische Universität München, Germany, Jan. 1994.

    Google Scholar 

  25. D. Okunbor and R. D. Skeel. Explicit canonical methods for Hamiltonian systems. Working document, Numerical Computing Group, University of Illinois at Urbana-Champaign, 1991.

    Google Scholar 

  26. Andreas Windemuth. Advanced Algorithms for Molecular Dynamics Simulation: The Program PMD. ACS Books, 1995.

    Google Scholar 

  27. D. D. Humphreys, R. A. Friesner, and B. J. Berne. Simulated annealing of a protein in a continuum solvent by multiple-time-step molecular dynamics. J. Phys. Chem., 99: 10674–10685, 1995.

    Article  Google Scholar 

  28. P. Procacci, T. Darden, and M. Marchi. A very fast molecular dynamics method to simulate biomolecular systems with realistic electrostatic interactions. J. Phys. Chem., 100: 10464–10468, 1996.

    Article  Google Scholar 

  29. S. J. Stuart, R. Zhou, and B. J. Berne. Molecular dynamics with multiple time scales: The selection of efficient reference system propagators. J. Chem. Phys., 105: 1426–1436, 1996.

    Article  Google Scholar 

  30. R. Zhou and B. J. Berne. A new molecular dynamics method combining the reference system propagator algorithm with a fast multipole method for simulating proteins and other complex systems. J. Phys. Chem., 103: 9444–9459, 1995.

    Article  Google Scholar 

  31. T. Schlick, E. Bartha, and M. Mandziuk. Biomolecular dynamics at long timesteps: Bridging the timescale gap between simulation and experimentation. Ann. Rev. Biophys. Biom. Structure, 26: 181–222, 1997.

    Article  Google Scholar 

  32. Andrew. W. Appel. An efficient program for many-body simulation. SIAM J. Sci. Stat. Comput., 6(1): 85–103, January 1985.

    Article  MathSciNet  Google Scholar 

  33. Josh Barnes and Piet Hut. A hierarchical o(n log n) force-calculation algorithm. Nature (London), 324: 446–449, December 1986.

    Article  Google Scholar 

  34. L. Greengard and V. Rokhlin. On the evaluation of electrostatic interactions in molecular modeling. Chem. Scr., 29A: 139–144, 1989.

    Google Scholar 

  35. James F. Leathrum and John A. Board. The parallel fast multipole algorithm in three dimensions. Technical report, Dept. of Electrical Engineering, Duke University, Durham, 1992.

    Google Scholar 

  36. C. Niedermeier and P. Tavan. A structure adapted multipole method for electrostatic interactions in protein dynamics. J. Chem. Phys., 101: 734–748, 1994.

    Article  Google Scholar 

  37. Christoph Niedermeier. Modellierung elektrostatischer Wechselwirkungen in Proteinen: Eine strukturadaptierte Multipolmethode. Doktorarbeit, Ludwig-Maximilians-Universität, München, Germany, 1995.

    Google Scholar 

  38. C. Niedermeier and P. Tavan. Fast version of the structure adapted multipole method — efficient calculation of electrostatic forces in protein dynamics. Mol. Sim., 17: 57–66, 1996.

    Article  Google Scholar 

  39. B. A. Luty, I. G. Tironi, and W. F. van Gunsteren. Lattice-sum methods for calculating electrostatic interactions in molecular simulations. J. Chem. Phys., 103: 3014–3021, 1995.

    Article  Google Scholar 

  40. U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen. The smooth particle mesh ewald method. J. Chem. Phys., 103: 8577, 1995.

    Article  Google Scholar 

  41. Brock A. Luty, Ilario G. Tironi, and Wilfried F. van Gunsteren. Lattice-sum methods for calculating electrostatic interactions in molecular simulations. J. Chem. Phys., 103: 3014–3021, 1995.

    Article  Google Scholar 

  42. Brock A. Luty and Wilfried F. van Gunsteren. Calculating electrostatic interactions using the particleparticle particlemesh method with nonperiodic long-range interactions. J. Phys. Chem., 100: 2581–2587, 1996.

    Article  Google Scholar 

  43. Bernhard R. Brooks, Robert E. Bruccoleri, Barry D. Olafson, David J. States, S. Swaminathan, and Martin Karplus. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J. Comp. Chem., 4(2): 187–217, 1983.

    Article  Google Scholar 

  44. Charles L. Brooks III, B. Montgomery Pettitt, and Martin Karplus. Structural and energetic effects of truncating long ranged interactions in ionic and polar fluids. J. Chem. Phys., 83(11): 5897–5908, December 1985.

    Article  Google Scholar 

  45. Richard J. Loncharich and Bernard R. Brooks. The effects of truncating longrange forces on protein dynamics. Proteins, 6: 32–45, 1989.

    Article  Google Scholar 

  46. M. Eichinger, H. Grubmüller, H. Heller, and P. Tavan. FAMUSAMM: An algorithm for rapid evaluation of electrostatic interaction in molecular dynamics simulations. J. Comp. Chem., 18: 1729–1749, 1997.

    Article  Google Scholar 

  47. M. Eichinger. Paralleler schneller Multipolalgorithmus mit Mehrschrittverfahren für Molekulardynamiksimulationen. Diplomarbeit, Ludwig-Maximilians-Universität, München, Germany, 1995.

    Google Scholar 

  48. M. Eichinger, H. Grubmüller, and H. Heller. User Manual for EGO-V1II, Release 2.0. Theoretische Biophysik, Institut für Medizinische Optik, Ludwig-Maximilians-Universität, Theresienstr. 37, D-80333 München, Germany, 1995. Electronic access: http://www.imo.physik.uni-muenchen.de/ego.html.

  49. Helmut Grubmüller, Berthold Heymann, and Paul Tavan. Ligand binding: Molecular mechanics calculation of the streptavidin-biotin rupture force. Science, 271(5251): 997–999, 1996.

    Article  Google Scholar 

  50. E.-L. Florin, V. T. Moy, and H. E. Gaub. Adhesion forces between individual ligand-receptor pairs. Science, 264: 415–417, Apr. 15 1994.

    Article  Google Scholar 

  51. N. M. Green. Avidin. Adv. Protein Chem., 29: 85, 1975.

    Article  Google Scholar 

  52. S. Miyamoto and P. A. Kollman. Absolute and relative binding free energy calculations of the interaction of biotin and its analogs with streptavidin using molecular dynamics/free energy perturbation approaches. Proteins, 16: 226–245, 1993.

    Article  Google Scholar 

  53. S. Izrailev, S. Stepaniants, M. Baisera, Y. Oono, and K. Schulten. Molecular dynamics study of unbinding of the avidin-biotin complex. Biophys. J., 72: 1568–1581, 1997.

    Article  Google Scholar 

  54. Evan Evans and Ken Ritchie. Dynamic strength of molecular adhesion bonds. Biophys. J., 72: 1541, 1997.

    Article  Google Scholar 

  55. J. S. Griffith. Nature (London), 215: 1043–1044, 1967.

    Article  Google Scholar 

  56. S. B. Prusiner. Science, 252: 1515–1522, 1991.

    Article  Google Scholar 

  57. Hans Frauenfelder, Sthephen G. Sligar, and Peter G. Wolynes. The energy landscape and motions of proteins. Science, 254: 1598–1603, 1991.

    Article  Google Scholar 

  58. R. H. Austin, K. W. Beeson, L. Eisenstein, H. Frauenfelder, and L.C. Gunsalus. Dynamics of ligand binding to myoglobin. Biochem., 14(24): 5355–5373, 1975.

    Article  Google Scholar 

  59. Helmut Grubmüller. Predicting slow structural transitions in macromolecular systems: conformational flooding. Phys. Rev. E, 52: 2893, 1995.

    Article  Google Scholar 

  60. T. Huber, A. E. Torda, and W. F. van Gunsteren. Local elevation: A method for improving the searching properties of molecular dynamics simulation. J. of Computer-Aided Molecular Design, 8: 695–708, 1994.

    Article  Google Scholar 

  61. J. C. Gower. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika, 53: 325, 1966.

    MathSciNet  MATH  Google Scholar 

  62. A. Amadei, A. B. M. Linssen, and H. J. C. Berendsen. Essential dynamics of proteins. Proteins, 17: 412–425, 1993.

    Article  Google Scholar 

  63. Steven Hayward, Akio Kitao, and Nobuhiro Gō. Harmonic and anharmonic aspects in the dynamics of BPTI: A normal mode analysis and principal component analysis. Physica Scripta, 3: 936–943, 1994.

    Google Scholar 

  64. H. Grubmüller, N. Ehrenhofer, and P. Tavan. Conformational dynamics of proteins: Beyond the nanosecond time scale. In M. Peyard, editor, Proceedings of the Workshop ‘Nonlinear Excitations in Biomolecules’, May 30-June 4, 1994, Les H ouches (France), Seiten 231–240. Centre de Physique des Houches (France), Springer-Verlag, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eichinger, M., Heymann, B., Heller, H., Grubmüller, H., Tavan, P. (1999). Conformational Dynamics Simulations of Proteins. In: Deuflhard, P., Hermans, J., Leimkuhler, B., Mark, A.E., Reich, S., Skeel, R.D. (eds) Computational Molecular Dynamics: Challenges, Methods, Ideas. Lecture Notes in Computational Science and Engineering, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58360-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58360-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63242-9

  • Online ISBN: 978-3-642-58360-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics