Skip to main content

Molecular Dynamics Simulations: The Limits and Beyond

  • Conference paper

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 4))

Abstract

This article reviews the present state of Molecular Dynamics (MD) simulations and tries to give an outlook into future developments. First an overview is given of methods, algorithms and force fields. After considering the limitations of the standard present-day techniques, developments that reach beyond the present limitations are considered. These concern three major directions: (a) inclusion of quantum dynamics, (b) reduction of complexity by reducing the number of degrees of freedom and averaging over interactions with less important degrees of freedom, (c) reduction to mesoscopic dynamics by considering particle densities rather than positions. It is concluded that MD is a mature technique for classical simulations of all-atom systems in the nanosecond time range, but is still in its infancy in reaching reliably into longer time scales.

A contribution from the Groningen Biomolecular Sciences and Biotechnology Institute.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Clarendon Press, Oxford (1987)

    MATH  Google Scholar 

  2. Alder, B.J., Wainwright, T.E.: Phase transition for a hard sphere system. J. Chem. Phys. 27 (1957) 1208–1209.

    Article  Google Scholar 

  3. Rahman, A.: Correlations in the motions of atoms in liquid argon. Phys. Rev. 136A (1964) 405–411.

    Google Scholar 

  4. Rahman, A., Stillinger, F.H.: Molecular dynamics study of liquid water. J. Chem. Phys. 55 (1971) 3336–3359.

    Article  Google Scholar 

  5. McCammon, J.A., Gelin, B.R., Karplus, M.: Dynamics of folded proteins. Nature 267 (1977) 585–590.

    Article  Google Scholar 

  6. Berendsen, H.J.C. (ed.): Models for Proteins. CECAM Workshop Report 1976, Centre Europén de Calcul Atomique et Moléculaire, Orsay, France (present address: CECAM, ENS, Aile LR5, 46, Allée d’Italie, 69364 Lyon Cedex 07, France).

    Google Scholar 

  7. Verlet, L.: Computer ‘experiments’ on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 165 (1967) 98–103.

    Article  Google Scholar 

  8. Ryckaert, J.-P., Ciccotti, G., Berendsen, H.J.C: Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Comput. Phys. 23 (1977) 327–341.

    Article  Google Scholar 

  9. Berendsen, H.J.C. (ed.): MC and MD of Water. CECAM Workshop Report 1972, Centre Europén de Calcul Atomique et Moléculaire, Orsay, France (present address: CECAM, ENS, Aile LR5, 46, Allée d’Italie, 69364 Lyon Cedex 07, France).

    Google Scholar 

  10. Ewald, P.P.: Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann. Phys. 64 (1921) 253–287.

    Article  MATH  Google Scholar 

  11. Hockney, R.W., Eastwood, J.W.: Computer Simulation Using Particles. Mc-Graw Hill, New York (1981).

    Google Scholar 

  12. Frenkel, D.: Free energy computation and first order phase transitions. In Molecular Dynamic Simulation of Statistical Mechanical Systems, Enrico Fermi Summer School, Varenna 1985, G. Ciccotti and W. Hoover, eds, North Holland, Amsterdam (1986) 43–65.

    Google Scholar 

  13. Free energy via molecular simulation: A primer. In: Computer Simulations of Biomolecular Systems, Vol 2, W.F. van Gunsteren, P.K. Weiner and A.J. Wilkinson, eds. Escom, Leiden (1993) 267–314.

    Google Scholar 

  14. Van Gunsteren, W.F., Beutler, T.C., Fraternali, F., King, P.M., Mark, A.E., Smith, P.E.: Computation of free energy in practice: Choice of approximations and accuracy limiting factors, in: Computer Simulations of Biomolecular Systems, Vol 2, W.F. van Gunsteren, P.K. Weiner and A.J. Wilkinson, eds. Escom, Leiden (1993) 315–348.

    Google Scholar 

  15. Valleau, J.P., Torrie, G.M.: A guide to Monte Carlo for statistical mechanics. 2. Byways, in Statistical Mechanics A, Modern Theoretical Chemistry, B. J. Berne, ed., Plenum Press, New York, 5 (1977) 169–194.

    Google Scholar 

  16. Widom, B.: Some topics in the theory of fluids. J. Chem. Phys. 39 (1963) 2808–2812.

    Article  Google Scholar 

  17. Widom, B.: Potential distribution theory and the statistical mechanics of fluids. J. Phys. Chem 86 (1982) 869–872.

    Article  Google Scholar 

  18. Torrie, G.M., Valleau, J.P.: Monte Carlo free energy estimates using non-Boltzmann sampling: application to the subcritical Lennard-Jones fluid. Chem. Phys. Lett. 28 (1974) 578–581.

    Article  Google Scholar 

  19. Torrie, G.M., Valleau, J.P.: Nonphysical sampling distributions in Monte Carlo free energy estimation: umbrella sampling. J. Comput. Phys. 23 (1977) 187–199.

    Article  Google Scholar 

  20. Berendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.F.: Statistical mechanics and molecular dynamics: The calculation of free energy, in Molecular Dynamics and Protein Structure, J. Hermans, ed., Polycrystal Book Service, PO Box 27, Western Springs, 111., USA, (1985) 43–46.

    Google Scholar 

  21. Behrens, P.H., Mackay, D.H.J., White, G.M., Wilson, K.R.: Thermodynamics and quantum corrections from molecular dynamics for liquid water. J. Chem. Phys. 79 (1983) 2375–2389.

    Article  Google Scholar 

  22. Warshel, A.: Computer Modeling of Chemical Reactions in Enzymes and Solutions. Wiley, New York (1992).

    Google Scholar 

  23. Chandrasekhar, J., Smith, S,F,m Jorgensen, W.L.: Theoretical examonation of the SN2 reaction involving chloride ion and methyl chloride in the gas phase and aqueous solution. J. Amer. Chem. Soc. 107 (1985) 154–163.

    Article  Google Scholar 

  24. Singh, U.C., Kollman, P.A.: A combined ab initio quantum mechanical and molecular mechanical method for carrying out simulations on complex molecular systems: Applications to the CH3C1 Cl-exchange reaction and gas phase protonation of polyethers. J. Comput. Chem. 7 (1986) 718–730.

    Article  Google Scholar 

  25. Bash, P.A., Field, M.J., Karplus, M.: Free energy perturbation method for chemical reactions in the condensed phase: A dynamical approach based on a combined quantum and molecular dynamics potential. J. Am. Chem. Soc. 109 (1987) 8092–8094.

    Article  Google Scholar 

  26. Field, M.J., Bash, P.A., Karplus, M.: A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations. J. Comput. Chem. 11 (1990) 700–733.

    Article  Google Scholar 

  27. Car, R., Parrinello, M.: Unified approach for molecular dynamics and density functional theory. Phys. Rev. Lett. 55 (1985) 2471–2474.

    Article  Google Scholar 

  28. Selloni, A., Carnevalli, P., Car, R., Parrinello, M.: Localization, hopping, and diffusion of electrons in molten salts. Phys. Rev. Lett. 59 (1987) 823–826.

    Article  Google Scholar 

  29. Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals. McGraw-Hill, New York (1965).

    MATH  Google Scholar 

  30. Chandler, D., Wolynes, P.G.: Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids. J. Chem. Phys. 74 (1981) 4078–4095.

    Article  Google Scholar 

  31. Gillan, M.J.: The quantum simulation of hydrogen in metals. Philosoph. Mag. A58 (1988) 257–283.

    Article  Google Scholar 

  32. Stouten, P.F.W., Frömmel, C., Nakamura, H., Sander, C: An effective solvation term based on atomic occupancies for use in protein simulations. Mol. Simul. 10 (1993) 97–120.

    Article  Google Scholar 

  33. Brooks III, C.L., Karplus, M.: Deformable stochastic boubdaries in molecular dynamics. J. Chem. Phys. 79 (1983) 6312–6325.

    Article  Google Scholar 

  34. Juffer, A.H., Berendsen, H.J.C.: Dynamic surface boundary conditions: A simple boundary model for molecular dynamics simulations. Mol. Phys. 79 (1993) 623–644.

    Article  Google Scholar 

  35. Berendsen, H.J.C., Van Gunsteren, W.F.: Practical algorithms for dynamic simulations, in Molecular Dynamics Simulations of Statistical Mechanical Systems, G. Ciccotti, ed., Soc. Italiana di Fisica, Bologna (1987) 43–65.

    Google Scholar 

  36. Tuckerman, M., Berne, B.J., Martyna, G.J.: Reversible multiple timescale molecular dynamics. J. Chem. Phys. 97 (1992) 1990–2001.

    Article  Google Scholar 

  37. Tuckerman, M.E., Berne, B.J., Rossi, A.: Molecular dynamics algorithm for multiple time scales: systems with long range forces. J. Chem. Phys. 94 (1991) 6811–6815.

    Article  Google Scholar 

  38. Tuckerman, M.E., Berne, B.J., Martyna, G.J.: Molecular dynamics algorithm for multiple time scales: systems with disparate masses. J. Chem. Phys. 94 (1991) 1465–1469.

    Article  Google Scholar 

  39. De Raedt, H.: Product formula algorithms for solving the time-dependent Schrödinger equation. Comput. Phys. Rep. 7 (1987) 1–72.

    Article  Google Scholar 

  40. Okunbor, D.I., Skeel, R.D.: Canonical numerical methods for molecular dynamics simulations. J. Comput. Chem. 15 (1994) 72–79.

    Article  Google Scholar 

  41. Nosé, S.: A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52 (1984) 255–268; ibid. A unified formulation of the constant temperature molecular dynamics method. J. Chem. Phys. 81 (1984) 511-519.

    Article  Google Scholar 

  42. Berendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.F., DiNola, A., Haak, J.R.: Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81 (1984) 3684–3690.

    Article  Google Scholar 

  43. Hess, B., Bekker, H., Berendsen, H.J.C., Fraaije, J.G.E.M.: LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 18 (1997), 1463–1472.

    Google Scholar 

  44. Berendsen, Van der Spoel, D. Van Drunen, R.: GROMACS: A message-passing parallel molecular dynamics implementation. Comput. Phys. Comm. 91 (1995) 43–56.

    Article  Google Scholar 

  45. Van Gunsteren, W.F., Berendsen, H.J.C.: Algorithms for macromolecular dynamics and constraint dynamics. Mol. Phys. 34 (1977) 1311–1327.

    Article  Google Scholar 

  46. Berendsen, H.J.C. Van Gunsteren, W.F.: Molecular dynamics with constraints, in The Physics of Superionic Conductors and Electrode Materials ed. J.W. Perram, NATO ASI Series B92 (1983) 221–240 (Plenum, New York).

    Google Scholar 

  47. Den Otter, W.K., Briels, W.J.: The reactive flux method applied to complex reactions: using the unstable normal mode as a reaction coordinate. J. Chem. Phys. 106 (1997) 1–15.

    Article  Google Scholar 

  48. Postma, J.P.M., Berendsen, H.J.C, Straatsma, T.P.: Intramolecular vibrations from molecular dynamics simulations of liquid water. Journal de Physique C7 (1984) 31–40.

    Google Scholar 

  49. Procacci, P., Darden, T., Marchi, M.,: A very fast molecular dynamics method to simulate biomolecular systems with realistic electrostatic interactions. J. Phys. Chem. 100 (1996) 10464–10468.

    Article  Google Scholar 

  50. Jordan, P.C., Van Maaren, P.J., Mavri, J., Van der Spoel, D., Berendsen, H.J.C: Towards phase transferable potential functions: Methodology and application to nitrogen. J. Chem. Phys. 103 (1995) 2272–2285.

    Article  Google Scholar 

  51. Smith, P.E and Van Gunsteren, W.F.: Methods for the evaluation of long range electrostatic forces in computer simulations of molecular systems, in: Computer Simulations of Biomolecular Systems, Vol 2, W.F. van Gunsteren, P.K. Weiner, A.J. Wilkinson, eds. Escom, Leiden (1993) 182–212.

    Google Scholar 

  52. Neumann, M.: Dipole moment fluctuation formulas in computer simulations of polar systems. Mol. Phys. 50 (1983) 841–858.

    Article  Google Scholar 

  53. Loncharich, R.J., Brooks, B.R.: The effects of truncating long-range forces on protein dynamics. Proteins 6 (1989) 32–45.

    Article  Google Scholar 

  54. Kitchen, D.B., Hirata, F., Westbrook, J.D., Levy, R.: Conserving energy during molecular dynamics simulations of water, proteins, and proteins in water. J. Comput. Chem. 11 (1990) 1169–1180.

    Article  Google Scholar 

  55. Schreiber, H., Steinhauser, O.: Cutoff size does strongly influence molecular dynamics results on solvated polypeptides. Biochem. 31 (1992) 5856–5860.

    Article  Google Scholar 

  56. Schreiber, H., Steinhauser, O.: Molecular dynamic simulation studies of solvated polypeptides: why the cutoff scheme does not work. Chem. Phys. 168 (1992) 75–89.

    Article  Google Scholar 

  57. Guenot, J., Kollman, P.A.: Conformational and energetic effects of truncating nonbonded interactions in an aqueous protein dynamics simulation. J. Comput. Chem. 14 (1993) 295–311.

    Article  Google Scholar 

  58. Tasaki, K., McDonald, S., Brady, J.W.: Observations concerning the treatment of long range interactions in molecular dynamics simulations. J. Comput. Chem. 14 (1993) 278–284.

    Article  Google Scholar 

  59. York, D.M., Wlodawer, A., Pederson, L.G., Darden, T.A.: Atomic-level accuracy in simulation of large protein crystals. Proc. Natl Acad. Sci. USA 91 (1994) 8715–8718.

    Article  Google Scholar 

  60. Saito, M: Molecular dynamics simulations of proteins in solution: artefacts caused by the cutoff approximation. J. Chem. Phys. 101 (1994) 4055–4061.

    Article  Google Scholar 

  61. Fun Lau, K., Alper, H.E., Thacher, T.S., Stouch, T.R.: Effects od switching functions on the behavior of liquid water in molecular dynamics. J. Phys. Chem. 98 (1994) 8785–8792.

    Article  Google Scholar 

  62. Perera, L., Essmann, U., Berkowitz, M.: Effect of treatment of long-range forces on the dynamics of ions in aqueous solutions. J. Chem. Phys. 102 (1995) 450–456.

    Article  Google Scholar 

  63. Gilson, M.K.: Theory of electrostatic interactions in macromolecules. Curr. Opinion Struct. Biol. 5 (1995) 216–223.

    Article  Google Scholar 

  64. Teleman, O.: An efficient way to conserve the total energy in molecular dynamics simulations; boundary effects on energy conservation and dynamic properties. Mol. Simul. 1 (1988) 345–355.

    Article  Google Scholar 

  65. Berendsen, H.J.C.: Electrostatic interactions, in: Computer Simulations of Biomolecular Systems, Vol 2, W.F. van Gunsteren, P.K. Weiner and A.J. Wilkinson, eds. Escom, Leiden (1993) 161–181.

    Google Scholar 

  66. Ding, H.Q., Karawasa, N., Goddard III, W.A.: Optimal spline cutoffs for Coulomb and van der Waals interactions. Chem. Phys. Lett. 193 (1992) 197–201.

    Article  Google Scholar 

  67. Wood, R.H.: Continuum electrostatics in a computational universe with finite cut-off radii and periodic boundary conditions: Correction to computed free energies of ionic solvation. J. Chem. Phys. 103 (1995) 6177–6187.

    Article  Google Scholar 

  68. Straatsma, T.P., Berendsen, H.J.C.: Free energy of ionic hydration: Analysis of a thermodynamic integration technique to evaluate free energy differences by molecular dynamics simulations. J. Chem. Phys. 89 (1988) 5876–5886.

    Article  Google Scholar 

  69. Neumann, M., Steinhauser, O.: On the calculation of the frequency-dependent dielectric constant in computer simulations. Chem. Phys. Lett. 102 (1983) 508–513.

    Article  Google Scholar 

  70. Neumann, M., Steinhauser, O., Pawley, G.S.: Consistent calculations of the static and frequency-dependent dielectric constant in computer simulations. Mol. Phys. 52 (1984) 97–113.

    Article  Google Scholar 

  71. Appel, A.W.: SIAM J. Sci. Stat. Comput. 6 (1985) 85.

    Article  MathSciNet  Google Scholar 

  72. Barnes, J., Hut, P.: A hierarchical O(N log N) force calculation algorithm. Nature 324 (1986) 446–449.

    Article  Google Scholar 

  73. Greengard, L., Rokhlin, V.J.: A fast algorithm for particle simulations. J. Comput. Phys. 73 (1987) 325–348.

    Article  MathSciNet  MATH  Google Scholar 

  74. Niedermeier, C., Tavan, P.: A structure-adapted multipole method for electrostatic interactions in protein dynamics. J. chem. Phys. 101 (1994) 734–748.

    Article  Google Scholar 

  75. Nelson, M., Humphrey, W., Gursoy, A., Dalke, A., Kalé, L., Skeel, R.D., Schulten, K.: NAMD-A parallel, object-oriented molecular dynamics program. Int. J. Supercomputing Applications and High Performance Computing 10 (1996) 251–268.

    Article  Google Scholar 

  76. Esselink, K.: A comparison of algorithms for long-range interactions. Comput. Phys. Comm. 87 (1995) 375–395.

    Article  Google Scholar 

  77. Luty, B.A., Davis, M.E., Tironi, LG., Van Gunsteren, W.F.: A comparison of particle-particle particle-mesh and Ewald methods for calculating interactions in periodic molecular systems. Mol. Simul. 14 (1994) 11–20.

    Article  Google Scholar 

  78. Belhadj, M., Alper, H.A., Levy, R.M.: Molecular dynamics simulations of water with Ewald summation for the long-range electrostatic interactions. Chem. Phys. Lett. 179 (1991) 13–20.

    Article  Google Scholar 

  79. Fincham, D.: Optimisation of the Ewald sum for large systems. Mol. Simul. 13 (1994) 1–9.

    Article  Google Scholar 

  80. Heyes, D.M.: Electrostatic potentials and fields in infinite point charge lattices. J. Chem. Phys. 74 (1981) 1924–1929.

    Article  MathSciNet  Google Scholar 

  81. Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., Pedersen, L.G.: A smooth particle mesh Ewald method. J. Chem. Phys. 103 (1995) 8577–8593.

    Article  Google Scholar 

  82. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.’: Numerical Recipes. The Art of Scientific Computing. Cambridge Univ. Press, 2nd ed. (1992)

    Google Scholar 

  83. Beckers, J. (Technical University, Delft): private communication.

    Google Scholar 

  84. Berendsen, H.J.C.: Bio-molecular dynamics comes of age. Science 271 (1996) 954.

    Article  Google Scholar 

  85. Tieleman, D.P., Berendsen, H.J.C.: A molecular dynamics study of the pores formed by E. coli OmpF porin in a fully hydrated POPE bilayer. Biophys. J., in print (1998).

    Google Scholar 

  86. Van Schaik, R.C., Berendsen, H.J.C., Torda, A.E., Van Gunsteren, W.F.: A structure refinement method based on molecular dynamics in 4 spatial dimensions. J. Mol. Biol. 234 (1993) 751–762.

    Article  Google Scholar 

  87. Field, M.: The simulation of chemical reactions, in: Computer Simulations of Biomolecular Systems, Vol 2, W.F. van Gunsteren, P.K. Weiner, A.J. Wilkinson, eds. Escom, Leiden (1993) 82–123.

    Google Scholar 

  88. Merz, K.M. Jr: Computer simulation of enzymatic reactions. Curr. Opinion Struct. Biol. 3 (1993) 234–240.

    Article  MathSciNet  Google Scholar 

  89. Åqvist, J., Warshel, A.: Simulation of enzyme reactions using valence bond force fields and other hybrid quantum/classical approaches. Chem. Rev. 93 (1993) 2523–2544.

    Article  Google Scholar 

  90. Bakowies, D., Thiel, W.: Hybrid models for combined quantum mechanical and molecular mechanical approaches. J. Phys. Chem. 100 (1996) 10580–10594.

    Article  Google Scholar 

  91. Handy, N.C.: Density functional theory. In Quantum mechanical simulation methods for studying biological systems, D. Bicout and M. Field, eds, Springer, Berlin (1996) 1–35.

    Google Scholar 

  92. Stanton, R.V., Hartsough, D.S., Merz, K.M. Jr: An Examination of a Density Functional-Molecular Mechanical Coupled Potential. J. Comput. Chem. 16 (1995) 113–128.

    Article  Google Scholar 

  93. Meier, R.J., Van Doremaele, H.J., Iarlori, S., Buda, F.: Ab-initio molecular dynamics study of metallocene-catalysed ethylene polymerization. J. Amer. Chem. Soc. 116 (1994) 7274–7281.

    Article  Google Scholar 

  94. Kramers, H.A.: Brownian motion in a field of force and the diffusion model of chemical reactions. Physica VII (1940) 284–304

    Article  MathSciNet  Google Scholar 

  95. Chandler, D.: Statistical mechanics of isomerization dynamics in liquids and the transition state approximation. J. Chem. Phys. 68 (1978) 2959–2970. See also Chandler, D.: J. Stat. Phys. 42 (1986) 49.

    Article  Google Scholar 

  96. Hänggi, P., Talkner, P., Borkovec, M.: Reaction-rate theory: fifty years after Kramers. Revs Modern Phys. 62 (1990) 251–341.

    Article  Google Scholar 

  97. Devault, D.: Quantum mechanical tunnelling in biological systems. Quart. Rev. Biophys. 13 (1980) 387–564.

    Article  Google Scholar 

  98. Moser, C.C., Dutton, P.L.: Biological electron transfer: measurement, mechanism, engineering requirements. In Quantum mechanical simulation methods for studying biological systems, D. Bicout and M. Field, eds, Springer, Berlin (1996) 201–214.

    Google Scholar 

  99. Schulten, K.: Curve crossing in a protein: coupling of the elementary quantum process to motions of the protein. In Quantum mechanical simulation methods for studying biological systems, D. Bicout and M. Field, eds, Springer, Berlin (1996) 85–118.

    Google Scholar 

  100. Rossky, P.J., Schnitker, J.: The hydrated electron: quantum simulation of structure, spectroscopy and dynamics. J. Phys. Chem. 92 (1988) 4277–4285.

    Article  Google Scholar 

  101. Gerber, R.B., Buch, V., Ratner, M.A.: Time-dependent self-consistent field approximation for intramolecular energy transfer. I. Formulation and application to dissociation of van der Waals molecules. J. Chem. Phys. 77 (1982) 3022–3030.

    Article  Google Scholar 

  102. Berendsen, H.J.C., Mavri, J.: Simulating proton transfer processes: Quantum dynamics embedded in a classical environment. In Theoretical Treatments of Hydrogen Bonding, D. Hadzi, ed., Wiley, New York (1997) 119–141.

    Google Scholar 

  103. Drukker, K., Hammes-Schiffer, S.: An analytical derivation of MC-SCF vibrational wave functions for the quantum dynamical simulation of multiple proton transfer reactions: Initial application to protonated water chains. J. Chem. Phys. 107 (1997) 363–374.

    Article  Google Scholar 

  104. Bala, P., Lesyng, B., McCammon, J.A.: Extended Hellmann-Feynman theorem for non-stationary states and its application in quantum-classical molecular dynamics simulations. Chem. Phys. Lett. 219 (1994) 259–266.

    Article  Google Scholar 

  105. Berendsen, H.J.C., Mavri, J.: Quantum simulation of reaction dynamics by Density Matrix Evolution. J. Phys. Chem. 97 (1993) 13464–13468.

    Article  Google Scholar 

  106. Berendsen, H.J.C., Mavri, J.: Quantum dynamics simulation of a small quantum system embedded in a classical environment, In Quantum mechanical simulation methods for studying biological systems, D. Bicout and M. Field, eds, Springer, Berlin (1996) 157–179.

    Google Scholar 

  107. Ehrenfest, P.: Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik innerhalb der Quantenmechanik. Z. für Physik 45 (1927) 455–457.

    Article  MATH  Google Scholar 

  108. Bornemann, F.A., Nettesheim, P., Schütte, C: Quantum-classical molecular dynamics as an approximation to full quantum dynamics. J. Chem. Phys. 105 (1996) 1074–1083.

    Article  Google Scholar 

  109. Bala, P., Lesyng, B., McCammon, J.A.: Application of quantum-classical and quantum-stochastic molecular dynamics simulations for proton transfer processes. Chem. Phys. 180 (1994) 271–285.

    Article  Google Scholar 

  110. Bala, P., Grochowsky, P., Lesyng, B., McCammon, J.A.: Quantum-classical molecular dynamics. Models and applications. In Quantum mechanical simulation methods for studying biological systems, D. Bicout and M. Field, eds, Springer, Berlin (1996) 119–156.

    Google Scholar 

  111. Mavri, J., Berendsen, H.J.C., Van Gunsteren, W.F.: Influence of solvent on intramolecular proton transfer in hydrogen malonate. Molecular dynamics study of tunneling by density matrix evolution and nonequilibrium solvation. J. Phys. Chem. 97 (1993) 13469–13476.

    Article  Google Scholar 

  112. Mavri, J., Berendsen, H.J.C.: Dynamical simulation of a quantum harmonic oscillator in a noble-gas bath by density matrix evolution. Phys. Rev. E 50 (1994) 198–204.

    Google Scholar 

  113. Mavri, J., Lensink, M., Berendsen, H.J.C.: Treatment of inelastic collisions of a particle with a quantum harmonic oscillator by density matrix evolution. Mol. Phys. 82 (1994) 1249–1257.

    Article  Google Scholar 

  114. Mavri, J., Berendsen, H.J.C.: Calculation of the proton transfer rate using density matrix evolution and molecular dynamics simulations: Inclusion of the proton excited states. J. Phys. Chem. 99 (1995) 12711–12717.

    Article  Google Scholar 

  115. Berendsen, H.J.C., Mavri, J.: Approach to non-adiabatic transitions by density matrix evolution and molecular dynamics simulation. Int. J. Quant. Chem. 57 (1996) 975–984.

    Article  Google Scholar 

  116. Ernst, R.R., Bodenhausen, G., Wokaun, A.: Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Clarendon Press, Oxford (1987).

    Google Scholar 

  117. Pechukas, P.: Time-dependent semiclassical scattering theory. II Atomic collisions. Phys. Rev. 181 (1969) 174–185.

    Article  Google Scholar 

  118. Tully, J.C.: Molecular dynamics with electronic transitions. J. Chem. Phys. 93 (1990) 1061–1071.

    Article  Google Scholar 

  119. Hammes-Schiffer, S., Tully, J.C.: Proton transfer in solution: Molecular dynamics with quantum transitions. J. Chem. Phys. 101 (1994) 4657–4667.

    Article  Google Scholar 

  120. Hammes-Schiffer, S., Tully, J.C.: Vibrationally Enhanced Proton Transfer. J. Phys. Chem. 99 (1995) 5793–5797.

    Article  Google Scholar 

  121. Hammes-Schiffer, S., Tully, J.C.: Nonadiabatic transition state theory and multiple potential energy surface molecular dynamics of infrequent events. J. Chem. Phys. 103 (1995) 8528–8537.

    Article  Google Scholar 

  122. Hammes-Schiffer: Multiconfigurational molecular dynamics with quantum transitions: Multiple proton transfer reactions. J. Chem. Phys. 105 (1996) 2236–2246.

    Article  Google Scholar 

  123. Cao, J., Voth, G.A.: The formulation of quantum statistical mechanics based on the Feynman path centroid density. I. Equilibrium properties. J. Chem. Phys. 100 (1994) 5093–5105; II Dynamical properties. J. Chem. Phys. 100 (1994) 5106-5117; III. Phase space formalism and nalysis of centroid molecular dynamics. J. Chem. Phys. 101 (1994) 6157-6167; IV. Algorithms for centroid molecular dynamics. J. Chem. Phys. 101 (1994) 6168-6183; V. Quantum instantaneous normal mode theory of liquids. J. Chem. Phys. 101 (1994) 6184-6192.

    Article  Google Scholar 

  124. Cao, J., Voth, G.A.: A unified framework for quantum activated rate processes. I. General theory. J. Chem. Phys. 105 (1996) 6856–6870.

    Article  Google Scholar 

  125. Martyna, G.J.: Adiabatic path integral molecular dynamics methods. I. Theory. J. Chem. Phys. 104 (1996) 2018–2027.

    Article  Google Scholar 

  126. Cao, J., Martyna, G.J.: Adiabatic path integral molecular dynamics methods. II. Algorithms. J. Chem. Phys. 104 (1996) 2028–2035.

    Article  Google Scholar 

  127. Lobaugh, J., Voth, G.A.: A path integral study of electronic polarization and nonlinear coupling effects in condensed phase proton transfer reactions. J.Chem. Phys. 100 (1994) 3039–3047.

    Article  Google Scholar 

  128. Lobaugh, J., Voth, G.A.: The quantum dynamics of an excess proton in water. J.Chem. Phys. 104 (1996) 2056–2069.

    Article  Google Scholar 

  129. Van der Spoel, D., Berendsen, H.J.C.: Determination of proton transfer rate constants using ab initio, molecular dynamics and density matrix evolution calculations. Pacific Symposium on Biocomputing, World Scientific, Singapore (1996) 1–14.

    Google Scholar 

  130. Mavri, J., Van der Spoel, D., Berendsen, H.J.C.: The rate of proton transfer in the active site of HIV-1 protease. Submitted, 1998.

    Google Scholar 

  131. Lensink, M., Mavri, J., Berendsen, H.J.C.: Simulation of a slow reaction with quantum character: Neutral hydrolysis of a carboxylic ester. Submitted (1998).

    Google Scholar 

  132. Marrink, S.-J., Berendsen, H.J.C.: Simulation of water transport through a lipid membrane. J. Phys. Chem. 98 (1994) 4155–4168.

    Article  Google Scholar 

  133. Permeation process of small molecules across lipid membranes studied by molecular dynamics simulations. J. Phys. Chem. 100 (1996) 16729–16738.

    Google Scholar 

  134. Marrink, S.J., Jähnig, F., Berendsen, H.J.C.: Proton transport across transient single-file water pores in a lipid membrane studied by molecular dynamics simulations. Biophys. J. 71 (1996) 632–647.

    Article  Google Scholar 

  135. Amadei, A., Linssen, A.B.M., Berendsen, H.J.C.: Essential Dynamics of Proteins. Proteins 17 (1993) 412–425.

    Article  Google Scholar 

  136. Van Aalten, D.M.F., Amadei, A., Linssen, A.B.M., Eijsink, V.G.H., Vriend, G., Berendsen, H.J.C.: The essential dynamics of thermolysin: Confirmation of the hinge-bending motion and comparison of simulations in vacuum and water. Proteins 22 (1995) 45–54.

    Article  Google Scholar 

  137. Amadei, A., Linssen, A.B.M., De Groot, B.L., Berendsen, H.J.C.: Essential degrees of freedom of proteins. In Modelling of biomolecular structures and mechanisms, A. Pullman et al., eds, Kluwer (1995) 85–93.

    Google Scholar 

  138. Van Aalten, D.M.F., Findlay, J.B.C., Amadei, A., Berendsen, H.J.C.: Essential dynamics of the cellular retinol-binding protein. Evidence for ligand-induced conformational changes. Protein Engin. 8 (1995) 1129–1136.

    Article  Google Scholar 

  139. Amadei, A., Linssen, A.B.M., De Groot, B.L., Van Aalten, D.M.F., Berendsen, H.J.C.: An efficient method for sampling the essential subspace of proteins. J. Biomol. Struct. Dyn. 13 (1996) 615–626.

    Article  Google Scholar 

  140. De Groot, B.L., Amadei, A., Van Aalten, D.M.F., Berendsen, H.J.C.: Towards an exhaustive sampling of the configurational space of the two forms of the peptide hormone guanylin. J. Biomol. Struct. Dyn. 13 (1996) 741–751.

    Article  Google Scholar 

  141. Creveld, L., Amadei, A., Van Schaik, C., Pepermans, R., De Vlieg, J., Berendsen, H.J.C.: Identification of functional and unfolding motions of cutinase as obtained from molecular dynamics computer simulations. Submitted (1998).

    Google Scholar 

  142. Hayward, S., Kitao, A., Berendsen, H.J.C.: Model-free methods to analyze domain motions in proteins from simulation: A comparison of normal mode analysis and molecular dynamics simulation of lysozyme. Proteins 27 (1997) 425–437.

    Article  Google Scholar 

  143. Hayward, S., Berendsen, H.J.C.: Systematic analysis of domain motions in proteins from conformational change: New results on citrate synthase and T4 lysozyme. Proteins 30 (1998) 144–154.

    Article  Google Scholar 

  144. Henderson, D.: Fundamentals of Inhomogeneous Fluids. Marcel Dekker, New York (1992).

    Google Scholar 

  145. Fraaije, J.G.E.M.: Dynamic density functional theory for microphase separation kinetics of block copolymer melts. J. Chem. Phys. 99 (1993) 9202–9212.

    Article  Google Scholar 

  146. Van Vlimmeren, B.A.C., Fraaije, J.G.E.M.: Calculation of noise distribution in mesoscopic dynamics models for phase-separation of multicomponent complex fluids. Comput. Phys. Comm. 99 (1996) 21–28.

    Article  MATH  Google Scholar 

  147. Maurits, N.M., Altevogt, P., Evers, O.A., Fraaije, J.G.E.M.: Simple numerical quadrature rules for Gaussian Chain polymer density functional calculations in 3D and implementation on parallel platforms. Comput. Theor. Polymer Sci. 6 (1996) 1–8.

    Google Scholar 

  148. Maurits, N.M., Fraaije, J.G.E.M.: Mesoscopic dynamics of copolymer melts: from density dynamics to external potential dynamics using nonlocal kinetic coupling. J. Chem. Phys. 107 (1997) 5879–5889.

    Article  Google Scholar 

  149. Fraaije, J.G.E.M., Van Vlimmeren, B.A.C., Maurits, N.M., Postma, M., Evers, O.A., Hoffmann, C., Altevogt, P., Goldbeck-Wood, G.: The dynamic mean-field density functional method and its application to the mesoscopic dynamics of quenched block copolymer melts. J. Chem. Phys. 106 (1997) 4260–4269.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berendsen, H.J.C. (1999). Molecular Dynamics Simulations: The Limits and Beyond. In: Deuflhard, P., Hermans, J., Leimkuhler, B., Mark, A.E., Reich, S., Skeel, R.D. (eds) Computational Molecular Dynamics: Challenges, Methods, Ideas. Lecture Notes in Computational Science and Engineering, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58360-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58360-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63242-9

  • Online ISBN: 978-3-642-58360-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics