Molecular Dynamics Simulations: The Limits and Beyond

Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 4)


This article reviews the present state of Molecular Dynamics (MD) simulations and tries to give an outlook into future developments. First an overview is given of methods, algorithms and force fields. After considering the limitations of the standard present-day techniques, developments that reach beyond the present limitations are considered. These concern three major directions: (a) inclusion of quantum dynamics, (b) reduction of complexity by reducing the number of degrees of freedom and averaging over interactions with less important degrees of freedom, (c) reduction to mesoscopic dynamics by considering particle densities rather than positions. It is concluded that MD is a mature technique for classical simulations of all-atom systems in the nanosecond time range, but is still in its infancy in reaching reliably into longer time scales.


Molecular Dynamics Molecular Dynamic Simulation Force Field Proton Transfer Biomolecular System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Clarendon Press, Oxford (1987)zbMATHGoogle Scholar
  2. 2.
    Alder, B.J., Wainwright, T.E.: Phase transition for a hard sphere system. J. Chem. Phys. 27 (1957) 1208–1209.CrossRefGoogle Scholar
  3. 3.
    Rahman, A.: Correlations in the motions of atoms in liquid argon. Phys. Rev. 136A (1964) 405–411.Google Scholar
  4. 4.
    Rahman, A., Stillinger, F.H.: Molecular dynamics study of liquid water. J. Chem. Phys. 55 (1971) 3336–3359.CrossRefGoogle Scholar
  5. 5.
    McCammon, J.A., Gelin, B.R., Karplus, M.: Dynamics of folded proteins. Nature 267 (1977) 585–590.CrossRefGoogle Scholar
  6. 6.
    Berendsen, H.J.C. (ed.): Models for Proteins. CECAM Workshop Report 1976, Centre Europén de Calcul Atomique et Moléculaire, Orsay, France (present address: CECAM, ENS, Aile LR5, 46, Allée d’Italie, 69364 Lyon Cedex 07, France).Google Scholar
  7. 7.
    Verlet, L.: Computer ‘experiments’ on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 165 (1967) 98–103.CrossRefGoogle Scholar
  8. 8.
    Ryckaert, J.-P., Ciccotti, G., Berendsen, H.J.C: Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Comput. Phys. 23 (1977) 327–341.CrossRefGoogle Scholar
  9. 9.
    Berendsen, H.J.C. (ed.): MC and MD of Water. CECAM Workshop Report 1972, Centre Europén de Calcul Atomique et Moléculaire, Orsay, France (present address: CECAM, ENS, Aile LR5, 46, Allée d’Italie, 69364 Lyon Cedex 07, France).Google Scholar
  10. 10.
    Ewald, P.P.: Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann. Phys. 64 (1921) 253–287.zbMATHCrossRefGoogle Scholar
  11. 11.
    Hockney, R.W., Eastwood, J.W.: Computer Simulation Using Particles. Mc-Graw Hill, New York (1981).Google Scholar
  12. 12.
    Frenkel, D.: Free energy computation and first order phase transitions. In Molecular Dynamic Simulation of Statistical Mechanical Systems, Enrico Fermi Summer School, Varenna 1985, G. Ciccotti and W. Hoover, eds, North Holland, Amsterdam (1986) 43–65.Google Scholar
  13. 13.
    Free energy via molecular simulation: A primer. In: Computer Simulations of Biomolecular Systems, Vol 2, W.F. van Gunsteren, P.K. Weiner and A.J. Wilkinson, eds. Escom, Leiden (1993) 267–314.Google Scholar
  14. 14.
    Van Gunsteren, W.F., Beutler, T.C., Fraternali, F., King, P.M., Mark, A.E., Smith, P.E.: Computation of free energy in practice: Choice of approximations and accuracy limiting factors, in: Computer Simulations of Biomolecular Systems, Vol 2, W.F. van Gunsteren, P.K. Weiner and A.J. Wilkinson, eds. Escom, Leiden (1993) 315–348.Google Scholar
  15. 15.
    Valleau, J.P., Torrie, G.M.: A guide to Monte Carlo for statistical mechanics. 2. Byways, in Statistical Mechanics A, Modern Theoretical Chemistry, B. J. Berne, ed., Plenum Press, New York, 5 (1977) 169–194.Google Scholar
  16. 16.
    Widom, B.: Some topics in the theory of fluids. J. Chem. Phys. 39 (1963) 2808–2812.CrossRefGoogle Scholar
  17. 17.
    Widom, B.: Potential distribution theory and the statistical mechanics of fluids. J. Phys. Chem 86 (1982) 869–872.CrossRefGoogle Scholar
  18. 18.
    Torrie, G.M., Valleau, J.P.: Monte Carlo free energy estimates using non-Boltzmann sampling: application to the subcritical Lennard-Jones fluid. Chem. Phys. Lett. 28 (1974) 578–581.CrossRefGoogle Scholar
  19. 19.
    Torrie, G.M., Valleau, J.P.: Nonphysical sampling distributions in Monte Carlo free energy estimation: umbrella sampling. J. Comput. Phys. 23 (1977) 187–199.CrossRefGoogle Scholar
  20. 20.
    Berendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.F.: Statistical mechanics and molecular dynamics: The calculation of free energy, in Molecular Dynamics and Protein Structure, J. Hermans, ed., Polycrystal Book Service, PO Box 27, Western Springs, 111., USA, (1985) 43–46.Google Scholar
  21. 21.
    Behrens, P.H., Mackay, D.H.J., White, G.M., Wilson, K.R.: Thermodynamics and quantum corrections from molecular dynamics for liquid water. J. Chem. Phys. 79 (1983) 2375–2389.CrossRefGoogle Scholar
  22. 22.
    Warshel, A.: Computer Modeling of Chemical Reactions in Enzymes and Solutions. Wiley, New York (1992).Google Scholar
  23. 23.
    Chandrasekhar, J., Smith, S,F,m Jorgensen, W.L.: Theoretical examonation of the SN2 reaction involving chloride ion and methyl chloride in the gas phase and aqueous solution. J. Amer. Chem. Soc. 107 (1985) 154–163.CrossRefGoogle Scholar
  24. 24.
    Singh, U.C., Kollman, P.A.: A combined ab initio quantum mechanical and molecular mechanical method for carrying out simulations on complex molecular systems: Applications to the CH3C1 Cl-exchange reaction and gas phase protonation of polyethers. J. Comput. Chem. 7 (1986) 718–730.CrossRefGoogle Scholar
  25. 25.
    Bash, P.A., Field, M.J., Karplus, M.: Free energy perturbation method for chemical reactions in the condensed phase: A dynamical approach based on a combined quantum and molecular dynamics potential. J. Am. Chem. Soc. 109 (1987) 8092–8094.CrossRefGoogle Scholar
  26. 26.
    Field, M.J., Bash, P.A., Karplus, M.: A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations. J. Comput. Chem. 11 (1990) 700–733.CrossRefGoogle Scholar
  27. 27.
    Car, R., Parrinello, M.: Unified approach for molecular dynamics and density functional theory. Phys. Rev. Lett. 55 (1985) 2471–2474.CrossRefGoogle Scholar
  28. 28.
    Selloni, A., Carnevalli, P., Car, R., Parrinello, M.: Localization, hopping, and diffusion of electrons in molten salts. Phys. Rev. Lett. 59 (1987) 823–826.CrossRefGoogle Scholar
  29. 29.
    Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals. McGraw-Hill, New York (1965).zbMATHGoogle Scholar
  30. 30.
    Chandler, D., Wolynes, P.G.: Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids. J. Chem. Phys. 74 (1981) 4078–4095.CrossRefGoogle Scholar
  31. 31.
    Gillan, M.J.: The quantum simulation of hydrogen in metals. Philosoph. Mag. A58 (1988) 257–283.CrossRefGoogle Scholar
  32. 32.
    Stouten, P.F.W., Frömmel, C., Nakamura, H., Sander, C: An effective solvation term based on atomic occupancies for use in protein simulations. Mol. Simul. 10 (1993) 97–120.CrossRefGoogle Scholar
  33. 33.
    Brooks III, C.L., Karplus, M.: Deformable stochastic boubdaries in molecular dynamics. J. Chem. Phys. 79 (1983) 6312–6325.CrossRefGoogle Scholar
  34. 34.
    Juffer, A.H., Berendsen, H.J.C.: Dynamic surface boundary conditions: A simple boundary model for molecular dynamics simulations. Mol. Phys. 79 (1993) 623–644.CrossRefGoogle Scholar
  35. 35.
    Berendsen, H.J.C., Van Gunsteren, W.F.: Practical algorithms for dynamic simulations, in Molecular Dynamics Simulations of Statistical Mechanical Systems, G. Ciccotti, ed., Soc. Italiana di Fisica, Bologna (1987) 43–65.Google Scholar
  36. 36.
    Tuckerman, M., Berne, B.J., Martyna, G.J.: Reversible multiple timescale molecular dynamics. J. Chem. Phys. 97 (1992) 1990–2001.CrossRefGoogle Scholar
  37. 37.
    Tuckerman, M.E., Berne, B.J., Rossi, A.: Molecular dynamics algorithm for multiple time scales: systems with long range forces. J. Chem. Phys. 94 (1991) 6811–6815.CrossRefGoogle Scholar
  38. 38.
    Tuckerman, M.E., Berne, B.J., Martyna, G.J.: Molecular dynamics algorithm for multiple time scales: systems with disparate masses. J. Chem. Phys. 94 (1991) 1465–1469.CrossRefGoogle Scholar
  39. 39.
    De Raedt, H.: Product formula algorithms for solving the time-dependent Schrödinger equation. Comput. Phys. Rep. 7 (1987) 1–72.CrossRefGoogle Scholar
  40. 40.
    Okunbor, D.I., Skeel, R.D.: Canonical numerical methods for molecular dynamics simulations. J. Comput. Chem. 15 (1994) 72–79.CrossRefGoogle Scholar
  41. 41.
    Nosé, S.: A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52 (1984) 255–268; ibid. A unified formulation of the constant temperature molecular dynamics method. J. Chem. Phys. 81 (1984) 511-519.CrossRefGoogle Scholar
  42. 42.
    Berendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.F., DiNola, A., Haak, J.R.: Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81 (1984) 3684–3690.CrossRefGoogle Scholar
  43. 43.
    Hess, B., Bekker, H., Berendsen, H.J.C., Fraaije, J.G.E.M.: LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 18 (1997), 1463–1472.Google Scholar
  44. 44.
    Berendsen, Van der Spoel, D. Van Drunen, R.: GROMACS: A message-passing parallel molecular dynamics implementation. Comput. Phys. Comm. 91 (1995) 43–56.CrossRefGoogle Scholar
  45. 45.
    Van Gunsteren, W.F., Berendsen, H.J.C.: Algorithms for macromolecular dynamics and constraint dynamics. Mol. Phys. 34 (1977) 1311–1327.CrossRefGoogle Scholar
  46. 46.
    Berendsen, H.J.C. Van Gunsteren, W.F.: Molecular dynamics with constraints, in The Physics of Superionic Conductors and Electrode Materials ed. J.W. Perram, NATO ASI Series B92 (1983) 221–240 (Plenum, New York).Google Scholar
  47. 47.
    Den Otter, W.K., Briels, W.J.: The reactive flux method applied to complex reactions: using the unstable normal mode as a reaction coordinate. J. Chem. Phys. 106 (1997) 1–15.CrossRefGoogle Scholar
  48. 48.
    Postma, J.P.M., Berendsen, H.J.C, Straatsma, T.P.: Intramolecular vibrations from molecular dynamics simulations of liquid water. Journal de Physique C7 (1984) 31–40.Google Scholar
  49. 49.
    Procacci, P., Darden, T., Marchi, M.,: A very fast molecular dynamics method to simulate biomolecular systems with realistic electrostatic interactions. J. Phys. Chem. 100 (1996) 10464–10468.CrossRefGoogle Scholar
  50. 50.
    Jordan, P.C., Van Maaren, P.J., Mavri, J., Van der Spoel, D., Berendsen, H.J.C: Towards phase transferable potential functions: Methodology and application to nitrogen. J. Chem. Phys. 103 (1995) 2272–2285.CrossRefGoogle Scholar
  51. 51.
    Smith, P.E and Van Gunsteren, W.F.: Methods for the evaluation of long range electrostatic forces in computer simulations of molecular systems, in: Computer Simulations of Biomolecular Systems, Vol 2, W.F. van Gunsteren, P.K. Weiner, A.J. Wilkinson, eds. Escom, Leiden (1993) 182–212.Google Scholar
  52. 52.
    Neumann, M.: Dipole moment fluctuation formulas in computer simulations of polar systems. Mol. Phys. 50 (1983) 841–858.CrossRefGoogle Scholar
  53. 53.
    Loncharich, R.J., Brooks, B.R.: The effects of truncating long-range forces on protein dynamics. Proteins 6 (1989) 32–45.CrossRefGoogle Scholar
  54. 54.
    Kitchen, D.B., Hirata, F., Westbrook, J.D., Levy, R.: Conserving energy during molecular dynamics simulations of water, proteins, and proteins in water. J. Comput. Chem. 11 (1990) 1169–1180.CrossRefGoogle Scholar
  55. 55.
    Schreiber, H., Steinhauser, O.: Cutoff size does strongly influence molecular dynamics results on solvated polypeptides. Biochem. 31 (1992) 5856–5860.CrossRefGoogle Scholar
  56. 56.
    Schreiber, H., Steinhauser, O.: Molecular dynamic simulation studies of solvated polypeptides: why the cutoff scheme does not work. Chem. Phys. 168 (1992) 75–89.CrossRefGoogle Scholar
  57. 57.
    Guenot, J., Kollman, P.A.: Conformational and energetic effects of truncating nonbonded interactions in an aqueous protein dynamics simulation. J. Comput. Chem. 14 (1993) 295–311.CrossRefGoogle Scholar
  58. 58.
    Tasaki, K., McDonald, S., Brady, J.W.: Observations concerning the treatment of long range interactions in molecular dynamics simulations. J. Comput. Chem. 14 (1993) 278–284.CrossRefGoogle Scholar
  59. 59.
    York, D.M., Wlodawer, A., Pederson, L.G., Darden, T.A.: Atomic-level accuracy in simulation of large protein crystals. Proc. Natl Acad. Sci. USA 91 (1994) 8715–8718.CrossRefGoogle Scholar
  60. 60.
    Saito, M: Molecular dynamics simulations of proteins in solution: artefacts caused by the cutoff approximation. J. Chem. Phys. 101 (1994) 4055–4061.CrossRefGoogle Scholar
  61. 61.
    Fun Lau, K., Alper, H.E., Thacher, T.S., Stouch, T.R.: Effects od switching functions on the behavior of liquid water in molecular dynamics. J. Phys. Chem. 98 (1994) 8785–8792.CrossRefGoogle Scholar
  62. 62.
    Perera, L., Essmann, U., Berkowitz, M.: Effect of treatment of long-range forces on the dynamics of ions in aqueous solutions. J. Chem. Phys. 102 (1995) 450–456.CrossRefGoogle Scholar
  63. 63.
    Gilson, M.K.: Theory of electrostatic interactions in macromolecules. Curr. Opinion Struct. Biol. 5 (1995) 216–223.CrossRefGoogle Scholar
  64. 64.
    Teleman, O.: An efficient way to conserve the total energy in molecular dynamics simulations; boundary effects on energy conservation and dynamic properties. Mol. Simul. 1 (1988) 345–355.CrossRefGoogle Scholar
  65. 65.
    Berendsen, H.J.C.: Electrostatic interactions, in: Computer Simulations of Biomolecular Systems, Vol 2, W.F. van Gunsteren, P.K. Weiner and A.J. Wilkinson, eds. Escom, Leiden (1993) 161–181.Google Scholar
  66. 66.
    Ding, H.Q., Karawasa, N., Goddard III, W.A.: Optimal spline cutoffs for Coulomb and van der Waals interactions. Chem. Phys. Lett. 193 (1992) 197–201.CrossRefGoogle Scholar
  67. 67.
    Wood, R.H.: Continuum electrostatics in a computational universe with finite cut-off radii and periodic boundary conditions: Correction to computed free energies of ionic solvation. J. Chem. Phys. 103 (1995) 6177–6187.CrossRefGoogle Scholar
  68. 68.
    Straatsma, T.P., Berendsen, H.J.C.: Free energy of ionic hydration: Analysis of a thermodynamic integration technique to evaluate free energy differences by molecular dynamics simulations. J. Chem. Phys. 89 (1988) 5876–5886.CrossRefGoogle Scholar
  69. 69.
    Neumann, M., Steinhauser, O.: On the calculation of the frequency-dependent dielectric constant in computer simulations. Chem. Phys. Lett. 102 (1983) 508–513.CrossRefGoogle Scholar
  70. 70.
    Neumann, M., Steinhauser, O., Pawley, G.S.: Consistent calculations of the static and frequency-dependent dielectric constant in computer simulations. Mol. Phys. 52 (1984) 97–113.CrossRefGoogle Scholar
  71. 71.
    Appel, A.W.: SIAM J. Sci. Stat. Comput. 6 (1985) 85.MathSciNetCrossRefGoogle Scholar
  72. 72.
    Barnes, J., Hut, P.: A hierarchical O(N log N) force calculation algorithm. Nature 324 (1986) 446–449.CrossRefGoogle Scholar
  73. 73.
    Greengard, L., Rokhlin, V.J.: A fast algorithm for particle simulations. J. Comput. Phys. 73 (1987) 325–348.MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    Niedermeier, C., Tavan, P.: A structure-adapted multipole method for electrostatic interactions in protein dynamics. J. chem. Phys. 101 (1994) 734–748.CrossRefGoogle Scholar
  75. 75.
    Nelson, M., Humphrey, W., Gursoy, A., Dalke, A., Kalé, L., Skeel, R.D., Schulten, K.: NAMD-A parallel, object-oriented molecular dynamics program. Int. J. Supercomputing Applications and High Performance Computing 10 (1996) 251–268.CrossRefGoogle Scholar
  76. 76.
    Esselink, K.: A comparison of algorithms for long-range interactions. Comput. Phys. Comm. 87 (1995) 375–395.CrossRefGoogle Scholar
  77. 77.
    Luty, B.A., Davis, M.E., Tironi, LG., Van Gunsteren, W.F.: A comparison of particle-particle particle-mesh and Ewald methods for calculating interactions in periodic molecular systems. Mol. Simul. 14 (1994) 11–20.CrossRefGoogle Scholar
  78. 78.
    Belhadj, M., Alper, H.A., Levy, R.M.: Molecular dynamics simulations of water with Ewald summation for the long-range electrostatic interactions. Chem. Phys. Lett. 179 (1991) 13–20.CrossRefGoogle Scholar
  79. 79.
    Fincham, D.: Optimisation of the Ewald sum for large systems. Mol. Simul. 13 (1994) 1–9.CrossRefGoogle Scholar
  80. 80.
    Heyes, D.M.: Electrostatic potentials and fields in infinite point charge lattices. J. Chem. Phys. 74 (1981) 1924–1929.MathSciNetCrossRefGoogle Scholar
  81. 81.
    Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., Pedersen, L.G.: A smooth particle mesh Ewald method. J. Chem. Phys. 103 (1995) 8577–8593.CrossRefGoogle Scholar
  82. 82.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.’: Numerical Recipes. The Art of Scientific Computing. Cambridge Univ. Press, 2nd ed. (1992)Google Scholar
  83. 83.
    Beckers, J. (Technical University, Delft): private communication.Google Scholar
  84. 84.
    Berendsen, H.J.C.: Bio-molecular dynamics comes of age. Science 271 (1996) 954.CrossRefGoogle Scholar
  85. 85.
    Tieleman, D.P., Berendsen, H.J.C.: A molecular dynamics study of the pores formed by E. coli OmpF porin in a fully hydrated POPE bilayer. Biophys. J., in print (1998).Google Scholar
  86. 86.
    Van Schaik, R.C., Berendsen, H.J.C., Torda, A.E., Van Gunsteren, W.F.: A structure refinement method based on molecular dynamics in 4 spatial dimensions. J. Mol. Biol. 234 (1993) 751–762.CrossRefGoogle Scholar
  87. 87.
    Field, M.: The simulation of chemical reactions, in: Computer Simulations of Biomolecular Systems, Vol 2, W.F. van Gunsteren, P.K. Weiner, A.J. Wilkinson, eds. Escom, Leiden (1993) 82–123.Google Scholar
  88. 88.
    Merz, K.M. Jr: Computer simulation of enzymatic reactions. Curr. Opinion Struct. Biol. 3 (1993) 234–240.MathSciNetCrossRefGoogle Scholar
  89. 89.
    Åqvist, J., Warshel, A.: Simulation of enzyme reactions using valence bond force fields and other hybrid quantum/classical approaches. Chem. Rev. 93 (1993) 2523–2544.CrossRefGoogle Scholar
  90. 90.
    Bakowies, D., Thiel, W.: Hybrid models for combined quantum mechanical and molecular mechanical approaches. J. Phys. Chem. 100 (1996) 10580–10594.CrossRefGoogle Scholar
  91. 91.
    Handy, N.C.: Density functional theory. In Quantum mechanical simulation methods for studying biological systems, D. Bicout and M. Field, eds, Springer, Berlin (1996) 1–35.Google Scholar
  92. 92.
    Stanton, R.V., Hartsough, D.S., Merz, K.M. Jr: An Examination of a Density Functional-Molecular Mechanical Coupled Potential. J. Comput. Chem. 16 (1995) 113–128.CrossRefGoogle Scholar
  93. 93.
    Meier, R.J., Van Doremaele, H.J., Iarlori, S., Buda, F.: Ab-initio molecular dynamics study of metallocene-catalysed ethylene polymerization. J. Amer. Chem. Soc. 116 (1994) 7274–7281.CrossRefGoogle Scholar
  94. 94.
    Kramers, H.A.: Brownian motion in a field of force and the diffusion model of chemical reactions. Physica VII (1940) 284–304MathSciNetCrossRefGoogle Scholar
  95. 95.
    Chandler, D.: Statistical mechanics of isomerization dynamics in liquids and the transition state approximation. J. Chem. Phys. 68 (1978) 2959–2970. See also Chandler, D.: J. Stat. Phys. 42 (1986) 49.CrossRefGoogle Scholar
  96. 96.
    Hänggi, P., Talkner, P., Borkovec, M.: Reaction-rate theory: fifty years after Kramers. Revs Modern Phys. 62 (1990) 251–341.CrossRefGoogle Scholar
  97. 97.
    Devault, D.: Quantum mechanical tunnelling in biological systems. Quart. Rev. Biophys. 13 (1980) 387–564.CrossRefGoogle Scholar
  98. 98.
    Moser, C.C., Dutton, P.L.: Biological electron transfer: measurement, mechanism, engineering requirements. In Quantum mechanical simulation methods for studying biological systems, D. Bicout and M. Field, eds, Springer, Berlin (1996) 201–214.Google Scholar
  99. 99.
    Schulten, K.: Curve crossing in a protein: coupling of the elementary quantum process to motions of the protein. In Quantum mechanical simulation methods for studying biological systems, D. Bicout and M. Field, eds, Springer, Berlin (1996) 85–118.Google Scholar
  100. 100.
    Rossky, P.J., Schnitker, J.: The hydrated electron: quantum simulation of structure, spectroscopy and dynamics. J. Phys. Chem. 92 (1988) 4277–4285.CrossRefGoogle Scholar
  101. 101.
    Gerber, R.B., Buch, V., Ratner, M.A.: Time-dependent self-consistent field approximation for intramolecular energy transfer. I. Formulation and application to dissociation of van der Waals molecules. J. Chem. Phys. 77 (1982) 3022–3030.CrossRefGoogle Scholar
  102. 102.
    Berendsen, H.J.C., Mavri, J.: Simulating proton transfer processes: Quantum dynamics embedded in a classical environment. In Theoretical Treatments of Hydrogen Bonding, D. Hadzi, ed., Wiley, New York (1997) 119–141.Google Scholar
  103. 103.
    Drukker, K., Hammes-Schiffer, S.: An analytical derivation of MC-SCF vibrational wave functions for the quantum dynamical simulation of multiple proton transfer reactions: Initial application to protonated water chains. J. Chem. Phys. 107 (1997) 363–374.CrossRefGoogle Scholar
  104. 104.
    Bala, P., Lesyng, B., McCammon, J.A.: Extended Hellmann-Feynman theorem for non-stationary states and its application in quantum-classical molecular dynamics simulations. Chem. Phys. Lett. 219 (1994) 259–266.CrossRefGoogle Scholar
  105. 105.
    Berendsen, H.J.C., Mavri, J.: Quantum simulation of reaction dynamics by Density Matrix Evolution. J. Phys. Chem. 97 (1993) 13464–13468.CrossRefGoogle Scholar
  106. 106.
    Berendsen, H.J.C., Mavri, J.: Quantum dynamics simulation of a small quantum system embedded in a classical environment, In Quantum mechanical simulation methods for studying biological systems, D. Bicout and M. Field, eds, Springer, Berlin (1996) 157–179.Google Scholar
  107. 107.
    Ehrenfest, P.: Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik innerhalb der Quantenmechanik. Z. für Physik 45 (1927) 455–457.zbMATHCrossRefGoogle Scholar
  108. 108.
    Bornemann, F.A., Nettesheim, P., Schütte, C: Quantum-classical molecular dynamics as an approximation to full quantum dynamics. J. Chem. Phys. 105 (1996) 1074–1083.CrossRefGoogle Scholar
  109. 109.
    Bala, P., Lesyng, B., McCammon, J.A.: Application of quantum-classical and quantum-stochastic molecular dynamics simulations for proton transfer processes. Chem. Phys. 180 (1994) 271–285.CrossRefGoogle Scholar
  110. 110.
    Bala, P., Grochowsky, P., Lesyng, B., McCammon, J.A.: Quantum-classical molecular dynamics. Models and applications. In Quantum mechanical simulation methods for studying biological systems, D. Bicout and M. Field, eds, Springer, Berlin (1996) 119–156.Google Scholar
  111. 111.
    Mavri, J., Berendsen, H.J.C., Van Gunsteren, W.F.: Influence of solvent on intramolecular proton transfer in hydrogen malonate. Molecular dynamics study of tunneling by density matrix evolution and nonequilibrium solvation. J. Phys. Chem. 97 (1993) 13469–13476.CrossRefGoogle Scholar
  112. 112.
    Mavri, J., Berendsen, H.J.C.: Dynamical simulation of a quantum harmonic oscillator in a noble-gas bath by density matrix evolution. Phys. Rev. E 50 (1994) 198–204.Google Scholar
  113. 113.
    Mavri, J., Lensink, M., Berendsen, H.J.C.: Treatment of inelastic collisions of a particle with a quantum harmonic oscillator by density matrix evolution. Mol. Phys. 82 (1994) 1249–1257.CrossRefGoogle Scholar
  114. 114.
    Mavri, J., Berendsen, H.J.C.: Calculation of the proton transfer rate using density matrix evolution and molecular dynamics simulations: Inclusion of the proton excited states. J. Phys. Chem. 99 (1995) 12711–12717.CrossRefGoogle Scholar
  115. 115.
    Berendsen, H.J.C., Mavri, J.: Approach to non-adiabatic transitions by density matrix evolution and molecular dynamics simulation. Int. J. Quant. Chem. 57 (1996) 975–984.CrossRefGoogle Scholar
  116. 116.
    Ernst, R.R., Bodenhausen, G., Wokaun, A.: Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Clarendon Press, Oxford (1987).Google Scholar
  117. 117.
    Pechukas, P.: Time-dependent semiclassical scattering theory. II Atomic collisions. Phys. Rev. 181 (1969) 174–185.CrossRefGoogle Scholar
  118. 118.
    Tully, J.C.: Molecular dynamics with electronic transitions. J. Chem. Phys. 93 (1990) 1061–1071.CrossRefGoogle Scholar
  119. 119.
    Hammes-Schiffer, S., Tully, J.C.: Proton transfer in solution: Molecular dynamics with quantum transitions. J. Chem. Phys. 101 (1994) 4657–4667.CrossRefGoogle Scholar
  120. 120.
    Hammes-Schiffer, S., Tully, J.C.: Vibrationally Enhanced Proton Transfer. J. Phys. Chem. 99 (1995) 5793–5797.CrossRefGoogle Scholar
  121. 121.
    Hammes-Schiffer, S., Tully, J.C.: Nonadiabatic transition state theory and multiple potential energy surface molecular dynamics of infrequent events. J. Chem. Phys. 103 (1995) 8528–8537.CrossRefGoogle Scholar
  122. 122.
    Hammes-Schiffer: Multiconfigurational molecular dynamics with quantum transitions: Multiple proton transfer reactions. J. Chem. Phys. 105 (1996) 2236–2246.CrossRefGoogle Scholar
  123. 123.
    Cao, J., Voth, G.A.: The formulation of quantum statistical mechanics based on the Feynman path centroid density. I. Equilibrium properties. J. Chem. Phys. 100 (1994) 5093–5105; II Dynamical properties. J. Chem. Phys. 100 (1994) 5106-5117; III. Phase space formalism and nalysis of centroid molecular dynamics. J. Chem. Phys. 101 (1994) 6157-6167; IV. Algorithms for centroid molecular dynamics. J. Chem. Phys. 101 (1994) 6168-6183; V. Quantum instantaneous normal mode theory of liquids. J. Chem. Phys. 101 (1994) 6184-6192.CrossRefGoogle Scholar
  124. 124.
    Cao, J., Voth, G.A.: A unified framework for quantum activated rate processes. I. General theory. J. Chem. Phys. 105 (1996) 6856–6870.CrossRefGoogle Scholar
  125. 125.
    Martyna, G.J.: Adiabatic path integral molecular dynamics methods. I. Theory. J. Chem. Phys. 104 (1996) 2018–2027.CrossRefGoogle Scholar
  126. 126.
    Cao, J., Martyna, G.J.: Adiabatic path integral molecular dynamics methods. II. Algorithms. J. Chem. Phys. 104 (1996) 2028–2035.CrossRefGoogle Scholar
  127. 127.
    Lobaugh, J., Voth, G.A.: A path integral study of electronic polarization and nonlinear coupling effects in condensed phase proton transfer reactions. J.Chem. Phys. 100 (1994) 3039–3047.CrossRefGoogle Scholar
  128. 128.
    Lobaugh, J., Voth, G.A.: The quantum dynamics of an excess proton in water. J.Chem. Phys. 104 (1996) 2056–2069.CrossRefGoogle Scholar
  129. 129.
    Van der Spoel, D., Berendsen, H.J.C.: Determination of proton transfer rate constants using ab initio, molecular dynamics and density matrix evolution calculations. Pacific Symposium on Biocomputing, World Scientific, Singapore (1996) 1–14.Google Scholar
  130. 130.
    Mavri, J., Van der Spoel, D., Berendsen, H.J.C.: The rate of proton transfer in the active site of HIV-1 protease. Submitted, 1998.Google Scholar
  131. 131.
    Lensink, M., Mavri, J., Berendsen, H.J.C.: Simulation of a slow reaction with quantum character: Neutral hydrolysis of a carboxylic ester. Submitted (1998).Google Scholar
  132. 132.
    Marrink, S.-J., Berendsen, H.J.C.: Simulation of water transport through a lipid membrane. J. Phys. Chem. 98 (1994) 4155–4168.CrossRefGoogle Scholar
  133. 133.
    Permeation process of small molecules across lipid membranes studied by molecular dynamics simulations. J. Phys. Chem. 100 (1996) 16729–16738.Google Scholar
  134. 134.
    Marrink, S.J., Jähnig, F., Berendsen, H.J.C.: Proton transport across transient single-file water pores in a lipid membrane studied by molecular dynamics simulations. Biophys. J. 71 (1996) 632–647.CrossRefGoogle Scholar
  135. 135.
    Amadei, A., Linssen, A.B.M., Berendsen, H.J.C.: Essential Dynamics of Proteins. Proteins 17 (1993) 412–425.CrossRefGoogle Scholar
  136. 136.
    Van Aalten, D.M.F., Amadei, A., Linssen, A.B.M., Eijsink, V.G.H., Vriend, G., Berendsen, H.J.C.: The essential dynamics of thermolysin: Confirmation of the hinge-bending motion and comparison of simulations in vacuum and water. Proteins 22 (1995) 45–54.CrossRefGoogle Scholar
  137. 137.
    Amadei, A., Linssen, A.B.M., De Groot, B.L., Berendsen, H.J.C.: Essential degrees of freedom of proteins. In Modelling of biomolecular structures and mechanisms, A. Pullman et al., eds, Kluwer (1995) 85–93.Google Scholar
  138. 138.
    Van Aalten, D.M.F., Findlay, J.B.C., Amadei, A., Berendsen, H.J.C.: Essential dynamics of the cellular retinol-binding protein. Evidence for ligand-induced conformational changes. Protein Engin. 8 (1995) 1129–1136.CrossRefGoogle Scholar
  139. 139.
    Amadei, A., Linssen, A.B.M., De Groot, B.L., Van Aalten, D.M.F., Berendsen, H.J.C.: An efficient method for sampling the essential subspace of proteins. J. Biomol. Struct. Dyn. 13 (1996) 615–626.CrossRefGoogle Scholar
  140. 140.
    De Groot, B.L., Amadei, A., Van Aalten, D.M.F., Berendsen, H.J.C.: Towards an exhaustive sampling of the configurational space of the two forms of the peptide hormone guanylin. J. Biomol. Struct. Dyn. 13 (1996) 741–751.CrossRefGoogle Scholar
  141. 141.
    Creveld, L., Amadei, A., Van Schaik, C., Pepermans, R., De Vlieg, J., Berendsen, H.J.C.: Identification of functional and unfolding motions of cutinase as obtained from molecular dynamics computer simulations. Submitted (1998).Google Scholar
  142. 142.
    Hayward, S., Kitao, A., Berendsen, H.J.C.: Model-free methods to analyze domain motions in proteins from simulation: A comparison of normal mode analysis and molecular dynamics simulation of lysozyme. Proteins 27 (1997) 425–437.CrossRefGoogle Scholar
  143. 143.
    Hayward, S., Berendsen, H.J.C.: Systematic analysis of domain motions in proteins from conformational change: New results on citrate synthase and T4 lysozyme. Proteins 30 (1998) 144–154.CrossRefGoogle Scholar
  144. 144.
    Henderson, D.: Fundamentals of Inhomogeneous Fluids. Marcel Dekker, New York (1992).Google Scholar
  145. 145.
    Fraaije, J.G.E.M.: Dynamic density functional theory for microphase separation kinetics of block copolymer melts. J. Chem. Phys. 99 (1993) 9202–9212.CrossRefGoogle Scholar
  146. 146.
    Van Vlimmeren, B.A.C., Fraaije, J.G.E.M.: Calculation of noise distribution in mesoscopic dynamics models for phase-separation of multicomponent complex fluids. Comput. Phys. Comm. 99 (1996) 21–28.zbMATHCrossRefGoogle Scholar
  147. 147.
    Maurits, N.M., Altevogt, P., Evers, O.A., Fraaije, J.G.E.M.: Simple numerical quadrature rules for Gaussian Chain polymer density functional calculations in 3D and implementation on parallel platforms. Comput. Theor. Polymer Sci. 6 (1996) 1–8.Google Scholar
  148. 148.
    Maurits, N.M., Fraaije, J.G.E.M.: Mesoscopic dynamics of copolymer melts: from density dynamics to external potential dynamics using nonlocal kinetic coupling. J. Chem. Phys. 107 (1997) 5879–5889.CrossRefGoogle Scholar
  149. 149.
    Fraaije, J.G.E.M., Van Vlimmeren, B.A.C., Maurits, N.M., Postma, M., Evers, O.A., Hoffmann, C., Altevogt, P., Goldbeck-Wood, G.: The dynamic mean-field density functional method and its application to the mesoscopic dynamics of quenched block copolymer melts. J. Chem. Phys. 106 (1997) 4260–4269.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  1. 1.BIOSON Research Institute and Dept of Biophysical ChemistryUniversity of GroningenGroningenthe Netherlands

Personalised recommendations