New Techniques for the Construction of Residue Potentials for Protein Folding

Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 4)


A smooth empirical potential is constructed for use in off-lattice protein folding studies. Our potential is a function of the ammo acid labels and of the distances between the C α atoms of a protein. The potential is a sum of smooth surface potential terms that model solvent interactions and of pair potentials that are functions of a distance, with a smooth cutoff at 12 Ångström. Techniques include the use of a fully automatic and reliable estimator for smooth densities, of cluster analysis to group together amino acid pairs with similar distance distributions, and of quadratic programming to find appropriate weights with which the various terms enter the total potential. For nine small test proteins, the new potential has local minima within 1.3-4.7Å of the PDB geometry, with one exception that has an error of 8.5Å.


protein folding tertiary structure potential energy surface global optimization empirical potential residue potential surface potential parameter estimation density estimation cluster analysis quadratic programming 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Bauer and A. Beyer, An improved pair potential to recognize native protein folds, Proteins: Struct. Funct. Gen. 18 (1994), 254–261.CrossRefGoogle Scholar
  2. 2.
    A. Ben-Nairn, Statistical potentials extracted from protein structures: Are these meaningful potentials? J. Chem Phys. 107 (1997), 3698–3706.CrossRefGoogle Scholar
  3. 3.
    F.C. Bernstein, T.F. Koetzle, G.J.B. Williams, E. Meyer, M.D. Bryce, J.R. Rogers, O. Kennard, T. Shikanouchi and M. Tasumi, The protein data bank: A computer-based archival file for macromolecular structures, J. Mol. Biol. 112 (1977), 535–542.CrossRefGoogle Scholar
  4. 4.
    J.D. Bryngelson, When is a potential accurate enough for structure prediction? Theory and application to a random heteropolymer model of protein folding, J. Chem. Phys. 100 (1994), 6038–6045.CrossRefGoogle Scholar
  5. 5.
    P.E. Gill, W. Murray and M.H. Wright, Practical optimization, Acad. Press, London 1981.zbMATHGoogle Scholar
  6. 6.
    J. R. Gunn, A. Monge, R.A. Friesner and C.H. Marshall, Hierarchical algorithm for computer modeling of protein tertiary structure: folding of myoglobin to 6.2A resolution, J. Phys. Chem. 98 (1994), 702–711.CrossRefGoogle Scholar
  7. 7.
    P. Hall and J.S. Marron, Lower bounds for bandwidth selection in density estimation, Probab. Th. Rel. Fields 90 (1991), 149–173.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    M. Hendlich, P. Lackner, S. Weitckus, H. Floeckner, R. Froschauer, K. Gottsbacher, G. Casari and M. J. Sippl, Identification of native protein folds amongst a large number of incorrect models, J. Mol. Biol. 216 (1990), 167–180.CrossRefGoogle Scholar
  9. 9.
    U. Hobohm, M. Scharf, R. Schneider and C. Sander, Selection of representative protein data sets, Protein Sci. 1 (1992), 409–417.CrossRefGoogle Scholar
  10. 10.
    J. Holland, Genetic algorithms and the optimal allocation of trials, SIAM J. Computing 2 (1973), 88–105.MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    L. Holm and C. Sander, Database algorithm for generating protein backbone and side-chain co-ordinates from a Cα trace, J. Mol. Biol. 218 (1991), 183–194.CrossRefGoogle Scholar
  12. 12.
    L. Holm and C. Sander, Fast and simple Monte Carlo algorithm for side chain optimization in proteins. Proteins 14 (1992), 213–223.CrossRefGoogle Scholar
  13. 13.
    T. Huber and A.E. Torda, Protein fold recognition without Boltzmann statistics or explicit physical basis, submitted to Protein Sci. (1997).Google Scholar
  14. 14.
    M.C. Jones, J.S. Marron and S.J. Sheather, Progress in data-based bandwidth selection for kernel density estimation, Comput. Statist. 11 (1996), 337–381.MathSciNetzbMATHGoogle Scholar
  15. 15.
    S. Kirkpatrick, C.D. Geddat, Jr., and M.P. Vecchi, Optimization by simulated annealing, Science 220 (1983), 671–680.MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    J. Kostrowicki and H.A. Scheraga, Application of the diffusion equation method for global optimization to oligopeptides, J. Phys. Chem. 96 (1992), 7442–7449.CrossRefGoogle Scholar
  17. 17.
    M. Levitt, A simplified representation of protein confomations for rapid simulation of protein folding, J. Mol. Biol. 104 (1976), 59–107.CrossRefGoogle Scholar
  18. 18.
    M. Levitt and A. Warshel, Computer simulation of protein folding, Nature 253 (1975), 694–698.CrossRefGoogle Scholar
  19. 19.
    O. Lund, J. Hansen, S. Brunak and J. Bohr, Relationship between protein structure and geometrical constraints, Protein Sci. 5 (1996), 2217–2225.CrossRefGoogle Scholar
  20. 20.
    C.D. Maranas, I.P. Androulakis and C.A. Floudas, A deterministic global optimization approach for the protein folding problem, pp. 133–150 in: Global minimization of nonconvex energy functions: molecular conformation and protein folding (P. M. Pardalos et al., eds.), Amer. Math. Soc, Providence, RI, 1996.Google Scholar
  21. 21.
    J.J. Moré and Z. Wu, Global continuation for distance geometry problems, SIAM J. Optimization 7 (1997), 814–836.zbMATHCrossRefGoogle Scholar
  22. 22.
    A. Neumaier, Molecular modeling of proteins and mathematical prediction of protein structure, SIAM Rev. 39 (1997), 407–460.MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    A. Neumaier, A nonuniqueness theorem for empirical protein potentials, in preparation.Google Scholar
  24. 24.
    M. Oobatake and G.M. Crippen, Residue-residue potential function for conformational analysis of proteins, J. Phys. Chem. 85 (1981), 1187–1197.CrossRefGoogle Scholar
  25. 25.
    T. Schlick and A. Fogelson, TNPACK-A truncated Newton minimization package for large scale problems, ACM Trans. Math. Softw. 18 (1992), 46–70; 71-111.zbMATHCrossRefGoogle Scholar
  26. 26.
    G. Schwarz, Estimating the dimension of a model, Ann. Statistics 6 (1978), 461–464.zbMATHCrossRefGoogle Scholar
  27. 27.
    D. Shortle, Y. Wang, J. Gillespie and J.O. Wrabl, Protein folding for realists: a timeless phenomenon, Prot. Sci. 5 (1996), 991–1000.CrossRefGoogle Scholar
  28. 28.
    M.J. Sippl, Boltzmann’s principle, knowledge based mean fields and protein folding, J. Comp. Aided Mol. Design 7 (1993), 473–501.CrossRefGoogle Scholar
  29. 29.
    M.J. Sippl, M. Hendlich and P. Lackner, Assembly of polypeptide and protein backbone conformations from low energy ensembles of short fragments, Protein Sci. 1 (1992), 625–640.CrossRefGoogle Scholar
  30. 30.
    D.R. Stampf, C.E. Felser and J.L. Sussman, PDBBrowse — a graphics interface to the Brookhaven Protein Data Bank, Nature 374 (1995), 572–574.CrossRefGoogle Scholar
  31. 31.
    S. Sun, Reduced representation model of protein structure prediction: statistical potential and genetic algorithms, Protein Sci. 2 (1993), 762–785.CrossRefGoogle Scholar
  32. 32.
    S. Sun, Reduced representation approach to protein tertiary structure prediction: statistical potential and simulated annealing, J. Theor. Biol. 172 (1995), 13–32.CrossRefGoogle Scholar
  33. 33.
    P.D. Thomas and K.A. Dill, Statistical potentials extracted from protein structures: How accurate are they? J. Mol. Biol. 257 (1996), 457–469.CrossRefGoogle Scholar
  34. 34.
    P. Ulrich, W. Scott, W.F. van Gunsteren and A. Torda, Protein structure prediction force fields: parametrization with quasi Newtonian dynamics, Proteins 27 (1997), 367–384.CrossRefGoogle Scholar
  35. 35.
    L.L. Walsh, Navigating the Brookhaven Protein Data Bank, Cabos Communication 10 (1994), 551–557.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  1. 1.Institut für MathematikUniversität WienWienAustria

Personalised recommendations