Skip to main content

New Techniques for the Construction of Residue Potentials for Protein Folding

  • Conference paper
Computational Molecular Dynamics: Challenges, Methods, Ideas

Abstract

A smooth empirical potential is constructed for use in off-lattice protein folding studies. Our potential is a function of the ammo acid labels and of the distances between the C α atoms of a protein. The potential is a sum of smooth surface potential terms that model solvent interactions and of pair potentials that are functions of a distance, with a smooth cutoff at 12 Ångström. Techniques include the use of a fully automatic and reliable estimator for smooth densities, of cluster analysis to group together amino acid pairs with similar distance distributions, and of quadratic programming to find appropriate weights with which the various terms enter the total potential. For nine small test proteins, the new potential has local minima within 1.3-4.7Å of the PDB geometry, with one exception that has an error of 8.5Å.

The authors gratefully acknowledge support of this research by the Austrian Fond zur Förderung der wissenschaftlichen Forschung (FWF) under grant P11516-MAT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Bauer and A. Beyer, An improved pair potential to recognize native protein folds, Proteins: Struct. Funct. Gen. 18 (1994), 254–261.

    Article  Google Scholar 

  2. A. Ben-Nairn, Statistical potentials extracted from protein structures: Are these meaningful potentials? J. Chem Phys. 107 (1997), 3698–3706.

    Article  Google Scholar 

  3. F.C. Bernstein, T.F. Koetzle, G.J.B. Williams, E. Meyer, M.D. Bryce, J.R. Rogers, O. Kennard, T. Shikanouchi and M. Tasumi, The protein data bank: A computer-based archival file for macromolecular structures, J. Mol. Biol. 112 (1977), 535–542.

    Article  Google Scholar 

  4. J.D. Bryngelson, When is a potential accurate enough for structure prediction? Theory and application to a random heteropolymer model of protein folding, J. Chem. Phys. 100 (1994), 6038–6045.

    Article  Google Scholar 

  5. P.E. Gill, W. Murray and M.H. Wright, Practical optimization, Acad. Press, London 1981.

    MATH  Google Scholar 

  6. J. R. Gunn, A. Monge, R.A. Friesner and C.H. Marshall, Hierarchical algorithm for computer modeling of protein tertiary structure: folding of myoglobin to 6.2A resolution, J. Phys. Chem. 98 (1994), 702–711.

    Article  Google Scholar 

  7. P. Hall and J.S. Marron, Lower bounds for bandwidth selection in density estimation, Probab. Th. Rel. Fields 90 (1991), 149–173.

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Hendlich, P. Lackner, S. Weitckus, H. Floeckner, R. Froschauer, K. Gottsbacher, G. Casari and M. J. Sippl, Identification of native protein folds amongst a large number of incorrect models, J. Mol. Biol. 216 (1990), 167–180.

    Article  Google Scholar 

  9. U. Hobohm, M. Scharf, R. Schneider and C. Sander, Selection of representative protein data sets, Protein Sci. 1 (1992), 409–417.

    Article  Google Scholar 

  10. J. Holland, Genetic algorithms and the optimal allocation of trials, SIAM J. Computing 2 (1973), 88–105.

    Article  MathSciNet  MATH  Google Scholar 

  11. L. Holm and C. Sander, Database algorithm for generating protein backbone and side-chain co-ordinates from a Cα trace, J. Mol. Biol. 218 (1991), 183–194.

    Article  Google Scholar 

  12. L. Holm and C. Sander, Fast and simple Monte Carlo algorithm for side chain optimization in proteins. Proteins 14 (1992), 213–223.

    Article  Google Scholar 

  13. T. Huber and A.E. Torda, Protein fold recognition without Boltzmann statistics or explicit physical basis, submitted to Protein Sci. (1997).

    Google Scholar 

  14. M.C. Jones, J.S. Marron and S.J. Sheather, Progress in data-based bandwidth selection for kernel density estimation, Comput. Statist. 11 (1996), 337–381.

    MathSciNet  MATH  Google Scholar 

  15. S. Kirkpatrick, C.D. Geddat, Jr., and M.P. Vecchi, Optimization by simulated annealing, Science 220 (1983), 671–680.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Kostrowicki and H.A. Scheraga, Application of the diffusion equation method for global optimization to oligopeptides, J. Phys. Chem. 96 (1992), 7442–7449.

    Article  Google Scholar 

  17. M. Levitt, A simplified representation of protein confomations for rapid simulation of protein folding, J. Mol. Biol. 104 (1976), 59–107.

    Article  Google Scholar 

  18. M. Levitt and A. Warshel, Computer simulation of protein folding, Nature 253 (1975), 694–698.

    Article  Google Scholar 

  19. O. Lund, J. Hansen, S. Brunak and J. Bohr, Relationship between protein structure and geometrical constraints, Protein Sci. 5 (1996), 2217–2225.

    Article  Google Scholar 

  20. C.D. Maranas, I.P. Androulakis and C.A. Floudas, A deterministic global optimization approach for the protein folding problem, pp. 133–150 in: Global minimization of nonconvex energy functions: molecular conformation and protein folding (P. M. Pardalos et al., eds.), Amer. Math. Soc, Providence, RI, 1996.

    Google Scholar 

  21. J.J. Moré and Z. Wu, Global continuation for distance geometry problems, SIAM J. Optimization 7 (1997), 814–836.

    Article  MATH  Google Scholar 

  22. A. Neumaier, Molecular modeling of proteins and mathematical prediction of protein structure, SIAM Rev. 39 (1997), 407–460.

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Neumaier, A nonuniqueness theorem for empirical protein potentials, in preparation.

    Google Scholar 

  24. M. Oobatake and G.M. Crippen, Residue-residue potential function for conformational analysis of proteins, J. Phys. Chem. 85 (1981), 1187–1197.

    Article  Google Scholar 

  25. T. Schlick and A. Fogelson, TNPACK-A truncated Newton minimization package for large scale problems, ACM Trans. Math. Softw. 18 (1992), 46–70; 71-111.

    Article  MATH  Google Scholar 

  26. G. Schwarz, Estimating the dimension of a model, Ann. Statistics 6 (1978), 461–464.

    Article  MATH  Google Scholar 

  27. D. Shortle, Y. Wang, J. Gillespie and J.O. Wrabl, Protein folding for realists: a timeless phenomenon, Prot. Sci. 5 (1996), 991–1000.

    Article  Google Scholar 

  28. M.J. Sippl, Boltzmann’s principle, knowledge based mean fields and protein folding, J. Comp. Aided Mol. Design 7 (1993), 473–501.

    Article  Google Scholar 

  29. M.J. Sippl, M. Hendlich and P. Lackner, Assembly of polypeptide and protein backbone conformations from low energy ensembles of short fragments, Protein Sci. 1 (1992), 625–640.

    Article  Google Scholar 

  30. D.R. Stampf, C.E. Felser and J.L. Sussman, PDBBrowse — a graphics interface to the Brookhaven Protein Data Bank, Nature 374 (1995), 572–574.

    Article  Google Scholar 

  31. S. Sun, Reduced representation model of protein structure prediction: statistical potential and genetic algorithms, Protein Sci. 2 (1993), 762–785.

    Article  Google Scholar 

  32. S. Sun, Reduced representation approach to protein tertiary structure prediction: statistical potential and simulated annealing, J. Theor. Biol. 172 (1995), 13–32.

    Article  Google Scholar 

  33. P.D. Thomas and K.A. Dill, Statistical potentials extracted from protein structures: How accurate are they? J. Mol. Biol. 257 (1996), 457–469.

    Article  Google Scholar 

  34. P. Ulrich, W. Scott, W.F. van Gunsteren and A. Torda, Protein structure prediction force fields: parametrization with quasi Newtonian dynamics, Proteins 27 (1997), 367–384.

    Article  Google Scholar 

  35. L.L. Walsh, Navigating the Brookhaven Protein Data Bank, Cabos Communication 10 (1994), 551–557.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Neumaier, A., Dallwig, S., Huyer, W., Schichl, H. (1999). New Techniques for the Construction of Residue Potentials for Protein Folding. In: Deuflhard, P., Hermans, J., Leimkuhler, B., Mark, A.E., Reich, S., Skeel, R.D. (eds) Computational Molecular Dynamics: Challenges, Methods, Ideas. Lecture Notes in Computational Science and Engineering, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58360-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58360-5_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63242-9

  • Online ISBN: 978-3-642-58360-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics