Skip to main content

Prediction of pKas of Titratable Residues in Proteins Using a Poisson-Boltzmann Model of the Solute-Solvent System

  • Conference paper
Computational Molecular Dynamics: Challenges, Methods, Ideas

Abstract

This article provides an overview of an algorithm used for the prediction of ionization constants of titratable residues in proteins. The algorithm is based on an assumption that the difference in protonation behavior of a given group in an isolated state in solution, for which the ionization constant is assumed to be known, and the protonation behavior in the protein environment is purely electrostatic in origin. Calculations of the relevant electrostatic free energies are based on the Poisson-Boltzmann (PB) model of the protein-solvent system and the finitedifference solution to the corresponding PB equation. The resultant multiple site titration problem is treated by one of two methods. The first is a hybrid approach, based on collecting ionizable groups into clusters. The second method is a Monte Carlo approach based on the Metropolis algorithm for extracting a sufficient number of low-energy ionization states out of all possible states, to obtain a correct estimation of thermodynamic properties of the system.

As examples of applications, we present the overall accuracy of predicted ionization constants for about 50 groups in 4 proteins, changes in the average charge of bovine pancreatic trypsin inhibitor at pH 7 along a molecular dynamics trajectory, and finally, we discuss some preliminary results obtained for protein kinases and protein phosphatases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Edsall, J. T.: George Scatchard, John G. Kirkwood, and the electrical interactions of amino acids and proteins. Trends Biochem. Sci. 7 (1982) 414–416.

    Article  Google Scholar 

  2. Eigen, M.: Proton transfer, acid-base catalysis, and enzymatic hydrolysis. Angew. Chem. Int. Ed. Engl. 3 (1964) 1–19.

    Article  Google Scholar 

  3. Poland, D.: Cooperative equilibria in physical biochemistry. Clarendon Press, Oxford, 1978.

    Google Scholar 

  4. Böttcher, C. J. F.: Theory of electric polarization, Volume I. Elsevier, Amsterdam, 1973.

    Google Scholar 

  5. Tanford, C., Kirkwood, J. G.: Theory of protein titration curves. I. General equations for impenetrable spheres. J. Am. Chem. Soc. 79 (1957) 5333–5339.

    Article  Google Scholar 

  6. Garrett, A. J. M., Poladian, L.: Refined derivation, exact solutions, and singular limits of the Poisson-Boltzmann equation. Ann. Phys. 188 (1988) 386–435.

    Article  MathSciNet  MATH  Google Scholar 

  7. Sharp, K. A., Honig, B.: Electrostatic interactions in macromolecules. Theory and applications. Ann. Rev. Biophys. Chem. 19 (1990) 301–332.

    Article  Google Scholar 

  8. Sharp, K. A., Honig, B.: Calculating total electrostatic energies with the nonlinear Poisson-Boltzmann equation. J. Phys. Chem. 94 (1990) 7684–7692.

    Article  Google Scholar 

  9. Zhou, H.-X.: Macromolecular electrostatic energy within the nonlinear Poisson-Boltzmann equation. J. Chem. Phys. 100 (1994) 3152–3162.

    Article  Google Scholar 

  10. Bernstein, F. C., Koettzle, T. F., Williams, G. J. B., Meyer, E. F., Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T., Tasumi, M. J.: The protein data bank: A computer-based archival file for molecular structures. J. Mol. Biol. 123 (1977) 557–594.

    Google Scholar 

  11. Brunger, A. T., Karplus, M.: Polar hydrogen positions in proteins: Empirical energy placement and neutron diffraction comparison. Proteins: Struct. Func. Genet. 4 (1988) 148–156.

    Article  Google Scholar 

  12. Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., Karplus, M.: CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J. Comp. Chem. 4 (1982) 187–217.

    Article  Google Scholar 

  13. Davis, M. E., Madura, J. D., Luty, B. A., McCammon, J. A.: Electrostatics and diffusion of molecules in solution: simulations with the University of Houston Brownian Dynamics program. Comp. Phys. Commun. 62 (1991) 187–197.

    Article  Google Scholar 

  14. Madura, J. D., Briggs, J. M., Wade, R. C., Davis, M. E., Luty, B. A., Ilin, A., Antosiewicz, J., Gilson, M. K., Bagheri, B., Scott, L. R., McCammon, J. A.: Electrostatics and disffusion of molecules in solution: simulations with the university of houston brownian dynamics program. Comp. Phys. Commun. 91 (1995) 57–95.

    Article  Google Scholar 

  15. Yang, A. S., Gunner, M. R., Sampogna, R., Sharp, K., Honig, B.: On the calculation of pKas in proteins. Proteins: Struct. Func. Genet. 15 (1993) 252–265.

    Article  Google Scholar 

  16. Bashford, D., Gerwert, K.: Electrostatic calculations of the pKa values of ion-izable groups in bacteriorhodopsin. J. Mol. Biol. 224 (1992) 473–486.

    Article  Google Scholar 

  17. Sitkoff, D., Sharp, K. A., Honig, B.: Accurate calculation of hydration free energies using macroscopic solvent models. J. Phys. Chem. 98 (1994) 1978–1988.

    Article  Google Scholar 

  18. Antosiewicz, J., McCammon, J. A., Gilson, M. K.: Prediction of pH-dependent properties of proteins. J. Mol. Biol. 238 (1994) 415–436.

    Article  Google Scholar 

  19. Richards, F. M.: Areas, volumes, packing and protein structure. Ann. Rev. Biophys. Bioeng. 6 (1977) 151–176.

    Article  Google Scholar 

  20. Gilson, M. K., Sharp, K. A., Honig, B. H.: Calculating the electrostatic potential of molecules in solution: Method and error assessment. J. Comp. Chem. 9 (1988) 327–335.

    Article  Google Scholar 

  21. Warwicker, J., Watson, H. C: Calculation of the electric potential in the active site cleft due to α-helix dipoles. J. Mol. Biol. 157 (1982) 671–679.

    Article  Google Scholar 

  22. Klapper, L., Hagstrom, R., Fine, R., Sharp, K., Honig, B.: Focusing of electric fields in the active site of cu,zn Superoxide dismutase. Proteins: Struct. Func. Genet. 1 (1986) 47–79.

    Article  Google Scholar 

  23. Davis, M. E., McCammon, J. A.: Solving the finite difference linearized Poisson-Boltzmann equation: A comparison of relaxation and conjugate gradients methods. J. Comp. Chem. 10 (1989) 386–394.

    Article  Google Scholar 

  24. Nicholls, A., Honig, B.: A rapid finite difference algorithm, utilizing successive over-relaxation to solve the Poisson-Boltzmann equation. J. Comp. Chem. 12 (1991) 435–445.

    Article  Google Scholar 

  25. Davis, M. E., McCammon, J. A.: Dielectric boundary smoothing in finite difference solutions of the poisson equation: An approach to improve accuracy and convergence. J. Comp. Chem. 12 (1991) 909–912.

    Article  Google Scholar 

  26. Gilson, M. K.: Multiple-site titration and molecular modeling: Two rapid methods for computing energies and forces for ionizable groups in proteins. Proteins: Struct. Funct. Genet. 15 (1993) 266–282.

    Article  Google Scholar 

  27. Antosiewicz, J., Porschke, D.: Electrostatics of hemoglobins from measurements of the electric dichroism and computer simulations. Biophys. J. 68 (1995) 655–664.

    Article  Google Scholar 

  28. Bashford, D., Karplus, M.: Multiple-site titration curves of proteins: an analysis of exact and approximate methods for their calculation. J. Phys. Chem. 95 (1991) 9556–9561.

    Article  Google Scholar 

  29. Tanford, C., Roxby, R.: Interpretation of protein titration curves: Application to lysozyme. Biochem. 11 (1972) 2192–2198.

    Article  Google Scholar 

  30. Antosiewicz, J.: Computation of the dipole moments of proteins. Biophys. J. 69 (1995) 1344–1354.

    Article  Google Scholar 

  31. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21 (1953) 1087–1092.

    Article  Google Scholar 

  32. Antosiewicz, J., Briggs, J. M., Elcock, A. E., Gilson, M. K., McCammon, J. A.: Computing the ionization states of proteins with a detailed charge model. J. Comp. Chem. 17 (1996) 1633–1644.

    Article  Google Scholar 

  33. Antosiewicz, J., McCammon, J. A., Gilson, M. K.: The determinants of pKas in proteins. Biochem. 35 (1996) 7819–7833.

    Article  Google Scholar 

  34. Wlodek, S. T., Antosiewicz, J., McCammon, J. A.: Prediction of titration properties of structures of a protein derived from molecular dynamics trajectories. Protein Sci. 6 (1997) 373–382.

    Article  Google Scholar 

  35. Knighton, D. R., Zheng, J., Eyck, L. F. T., Ashford, V. A., Xuong, N., Taylor, S. S., Sowadski, J. M.: Crystal structure of the catalytic subunit of cAMP-dependent protein kinase. Science 253 (1991) 407–420.

    Article  Google Scholar 

  36. Taylor, S. S., Radzio-Andzelm, E.: Cyclic AMP-dependent protein kinase. In Protein Kinases, Woodgett, J. R., editor, IRL Press, Oxford, 1994.

    Chapter  Google Scholar 

  37. Karlsson, R., Zheng, J., Zheng, N.-H., Taylor, S. S., Sowadski, J. M.: Structure of the mamalian catalytic subunit of cAMP-dependent protein kinase and an inhibitor peptide displays an open conformation. Acta Cryst. D 49 (1993) 381–388.

    Article  Google Scholar 

  38. Steinberg, R. A.: A kinase-negative mutant of s49 mouse lymphoma cells is defective in posttranslational maturation of catalytic subunitof cyclic ampdependent protein kinase. Mol. Cell Biol. 11 (1991) 705–712.

    Google Scholar 

  39. Zhang, Z.-Y., Dixon, J. E.: Active site labeling of the yersinia protein tyrosine phosphatase: The determination of the pKa of active site cysteine and the function of the conserved histidine 402. Biochem. 32 (1993) 9340–9345.

    Article  Google Scholar 

  40. Tsigelny, I., Grant, B. D., Taylor, S. S., Ten Eyck, L. F.: Catalytic subunit of cAMP-dependent protein kinase: Electrostatic features and peptide recognition. Biopolymers 39 (1996) 353–365.

    Article  Google Scholar 

  41. Molecular Simulations, Inc.: InsightIL Molecular Simulations, Inc., Waltham, MA, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Antosiewicz, J. et al. (1999). Prediction of pKas of Titratable Residues in Proteins Using a Poisson-Boltzmann Model of the Solute-Solvent System. In: Deuflhard, P., Hermans, J., Leimkuhler, B., Mark, A.E., Reich, S., Skeel, R.D. (eds) Computational Molecular Dynamics: Challenges, Methods, Ideas. Lecture Notes in Computational Science and Engineering, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58360-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58360-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63242-9

  • Online ISBN: 978-3-642-58360-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics